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Quantum Key Distribution (QKD)

● Allows two users – Alice (A) and Bob (B) – to 
establish a shared secret key

● Secure against an all powerful adversary
● Does not require any computational 

assumptions
● Attacker bounded only by the laws of physics
● Something that is not possible using classical 

means only
● Accomplished using a quantum communication 

channel
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Quantum Key Distribution
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Semi-Quantum Key Distribution

● In 2007, Boyer et al., introduced semi-quantum key distribution 
(SQKD)

● Now Alice (A) is quantum, but Bob (B) is limited or “classical”

● He can only directly work with the Z = {|0>, |1>} basis.
● Theoretically interesting:

● “How quantum does a protocol need to be in order to 
gain an advantage over a classical one?”

● Practically interesting:

● What if equipment breaks down or is never installed?

● Requires a two-way quantum communication channel
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Semi-Quantum Key Distribution
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SQKD Security
● Model introduced in 2007

● With many protocols developed
● But security proofs were in terms of 

“robustness”
● Not until 2015 that rigorous security proofs became 

available for some protocols along with noise tolerances 
and key-rate bounds
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Original SQKD Protocol: Prior Work

● 2015: First proof - shown to tolerate 5.34%

● 2017: Adding mismatched measurements allows noise tolerance 
of 11%

● Same as BB84!
● But: requires the collection and use of 18 different 

measurement statistics
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SQKD Security
● This work – new proof of security based on entropic 

uncertainty relation (and other tools...)
● We show how to use this relation on semi-quantum 

protocols for the first time

● Deriving a new key-rate bound without the need for 
mismatched measurements

– Result is a much cleaner expression with less 
reliance on statistics

– But lower noise tolerance...

● We also derive some interesting results and techniques 
applicable to other SQKD protocols...
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SQKD Security
● Note – other work used entropic relation for two-way fully 

quantum protocols * but:

● Only works for protocols that have certain 
“symmetry” properties

● Semi-quantum protocols do not apply to this 
construction

● We are the first to show how entropic 
uncertainty relations can be applied to the 
semi-quantum model

* N. Beaudry, M. Lucamarini, S. Mancini, and R. Renner. Security of two-way quantum key distribution. 
PRA 88(6)062302, 2013
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Security Proof
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Three Steps...

● First, we prove that for any semi-quantum protocol, it is 
sufficient to consider a “restricted” form of attack that is 
easier to analyze

● Second, we design a new “toy” protocol that is easier to 
analyze but implies security of the SQKD one.

● Third, we use an entropic uncertainty bound and a 
continuity bound on conditional von Neumann entropy to 
analyze the “toy” protocol.
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Three Steps...
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General QKD Security
● We consider collective attacks (and comment on general attacks 

later)

● After the quantum communication stage and parameter 
estimation stage, A and B hold an N bit raw key; E has a 
quantum system

● They then run an error correcting protocol and privacy 
amplification protocol

● Result is an l(n)-bit secret key – of interest is Devetak-Winter 
key-rate:

r=limN→∞

l(N )

N
=inf (S (A | E)−H (A | B))
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Step 1: Restricted Attack
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Restricted Attack
● The most general collective attack is a pair of unitary 

operators (U
F
, U

R
)

● Each U
i
 acts on Hilbert space H

TE

U
F

QM

U
R

A
lic

e B
ob
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Restricted Attack
● For single-state protocols (where A only sends |+>), it was 

shown restricted attacks exist [5]...

● We prove a similar result for multi-state protocols

bias

QM

U
R

A
lic

e B
ob

|+>
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Restricted Attack
● A Restricted Collective Attack with respect to ONB     

B={|v
0
>, |v

1
>} is a tuple (q

0
, q

1
, n

0
, n

1
, U

R
) where:

● Subject to:

q0, q1∈[0,1]

n0, n1∈{z∈C  such that | z |≤1}

U R isunitary acting on HTE

q0 n1 √1−q1
2
+q1 n0

* √1−q0
2
=0
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Restricted Attack: (q
0
, q

1
, n

0
, n

1
, U

R
)

● Eve first applies operator “F” whose action is defined as:

where:

● Then, on the return channel, she applies U
R

● Acting on H
TE

F | v0 >=q0 | 0,0>TE+√1−q0
2 |1, e >TE

F | v1 >=√1−q1
2 | 0, f >TE+q1 |1,0>TE

|e >=n0 |0>+√1−|n0 |2 |1>

| f >=n1 | 0>+√1−|n1 |2 | 1>
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Restricted Attack: (q
0
, q

1
, n

0
, n

1
, U

R
)

● We prove for every collective attack, there exists an 
equivalent restricted attack

● Thus, only need to consider restricted attacks for any 
SQKD protocol

U
F

U
R

QM

Eve - Full

F

U'
R

QM

Eve - Restricted
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Step 2: New Toy Protocol
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Reduction
● Goal: Construct a new protocol that is easier to analyze

● Now, Bob who will no longer be classical will prepare 
quantum states and send them to Alice (who is still 
quantum)

● Thus, it is a one-way protocol

● We do this using a “Rewind” operator...
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New Protocol
● Now, consider the following new “toy” protocol (which is 

not semi-quantum)

● Bob chooses randomly to “measure” or to 
“reflect” and prepares the state:

● Sends particle A
1
 and A

2
 to Alice who 

measures both registers in Z or X basis

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B If “Reflect”

√ p0 |0,0,0>A1 A2 B+√1− p0 | 1,1,1>A1 A2 B If “Measure”
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New Protocol
● Now, consider the following new “toy” protocol (which is 

not semi-quantum)

● Bob chooses randomly to “measure” or to 
“reflect” and prepares the state:

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B If “Reflect”

√ p0 |0,0,0>A1 A2 B+√1− p0 | 1,1,1>A1 A2 B If “Measure”

We allow Eve to control this value
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New Protocol
● Now, consider the following new “toy” protocol (which is 

not semi-quantum)

● Bob chooses randomly to “measure” or to 
“reflect” and prepares the state:

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B If “Reflect”

√ p0 |0,0,0>A1 A2 B+√1− p0 | 1,1,1>A1 A2 B If “Measure”

We allow Eve to control this value
Furthermore, she gets to 

attack both registers 
simultaneously
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New Protocol

Bob

A
1

A
2

Actual SQKD
Protocol

A B

Our new “toy”
Protocol

Eve Eve
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Security of new protocol ==> SQKD
Theorem 2: Let (U

F
, U

R
) be a collective attack against the 

original SQKD protocol and         be the density operator 
describing the protocol under this attack.  Then there exists 
an attack (p

0
, U) against the new protocol such that:

● If         is the density operator modeling new 
protocol under attack (p

0
,U), then

ρABE

σ ABE

σ ABE=ρABE
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Proof “idea”

F

V

QM Bob Bob

Rw

U

QM

SQKD Toy Protocol
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Proof “idea”

F

V

QM Bob Bob

Rw

U

QM

If Bob sends |0>
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Proof “idea”

F

V

QM Bob Bob

Rw

U

QM

Rw changes state to 
simulate A having 

sent a state and Bob 
measured |0>
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Proof “idea”

F

V

QM

SQKD

Bob Bob

Rw

U

QM

Toy Protocol

After “Rewinding” the state on 
these “wires+QM” are equal
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Proof “idea”

F

V

QM

SQKD

Bob Bob

Rw

U

QM

Toy Protocol

Only thing E can't “rewind” is 
the probability of observation
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Proof “idea”

F

U

QM

SQKD

Bob Bob

Rw

U

QM

Toy Protocol

These two operators are the 
same then

After “Rewinding” the state on 
these “wires+QM” are equal
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Of course, giving Eve more power 
doesn't hurt...

Bob
U
&

QM

A
1

A
2

Bob

Rw

U
R

QM

Toy Protocol (“Restricted” Attack) Toy Protocol
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Step 3: Security of New Protocol
(which then implies security of SQKD)
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Security of New Protocol
● There are two modes to the new protocol:

● “Reflect”
● “Measure”

● After attacking, but before A
1 
and A

2
 measure, the state of 

the system can be written:

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,1>A1 A2 B

τA1 A2 BE=PMμA1 A2 BE+PRρA1 A2BE
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Security of New Protocol
● There are two modes to the new protocol:

● “Reflect”
● “Measure”

● After attacking, but before A
1 
and A

2
 measure, the state of 

the system can be written:

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,1>A1 A2 B

τA1 A2 BE=PMμA1 A2 BE+PRρA1 A2BE

Measure Reflect
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Security of New Protocol
● There are two modes to the new protocol:

● “Reflect”
● “Measure”

● After attacking, but before A
1 
and A

2
 measure, the state of 

the system can be written:

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,0>A1 A2 B

√ p0 |0,0,0>A1 A2 B+√1− p0 |1,1,1>A1 A2 B

τA1 A2 BE=PMμA1 A2 BE+PRρA1 A2BE

Measure Reflect
Only these are used for 

key distillation
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Security of New Protocol

● Thus, we must compute:

● Instead, we will first compute:

S (A1
Z | E)μ

S (A1
Z | E)ρ

τA1 A2BE=PMμA1 A2 BE+PRρA1 A2 BE

Measure Reflect
Only these are used for 

key distillation
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Security of New Protocol
Lemma 1: Let            be the state of the system if B 
chooses “Reflect” in our toy protocol.  Let QX be the error 
rate in the X basis (e.g., probability that A

1
 measures |+> 

and A
2
 measures |->).  Then:

ρA1 A2 BE

S (A1
Z | E)ρ≥1−h(QX )
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Security of New Protocol
Proof (sketch):
B is completely independent of A

1
A

2
E.

Thus, we may trace out his system and:
We may now consider A

1
 and A

2
 as two separate parties and invoke a 

quantum entropic uncertainty relation* along with some properties of 
entropy** to show:

Thus:

ρA1 A2 BE=ρA1 A2 E

S (A1
Z | E)ρ+S (A1

X | A2)ρ≥1

S (A1
Z | E)ρ≥1−S (A1

X | A2)ρ

≥1−H (A1
X | A2

X )ρ=1−h(QX)

*: M. Berta, M. Christandl, R. Colbeck, J. Renes, and R. Renner. The uncertainty principle in the 
presence of quantum memory. Nature Physics 6(9):659-662, 2010.
** N. Beaudry, M. Lucamarini, S. Mancini, and R. Renner. Security of two-way quantum key distribution. 
PRA 88(6)062302, 2013
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Security of New Protocol

● We must compute:

● We have computed:

S (A1
Z | E)μ

S (A1
Z | E)ρ≥1−h(QX )

τA1 A2BE=PMμA1 A2 BE+PRρA1 A2 BE

Measure Reflect
Only these are used for 

key distillation
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Security of New Protocol

τA1 A2 BE=PMμA1 A2 BE+PRρA1 A2BE

Theorem 3: Given the above density operator, let Q be the Z basis error rate in 
a single channel (B->A

1
 and B->A

2
) and let Eve's attack be “symmetric” (i.e., p

0
 

= ½).  Let:

Then, it holds that:

δ=2Q (1−Q)+( 1
2
+2Q (1−Q))⋅h( 4Q(1−Q)

1+4Q (1−Q) )

S (A1
Z | E)μ≥f (Q), where

S (A1
Z | E)ρ−δ      if S (A2

Z | E)ρ≥2δ

1
2

S ( A1
Z | E)ρ        otherwise

f (Q)=
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Security of New Protocol

τA1 A2 BE=PMμA1 A2 BE+PRρA1 A2BE

Proof – takes advantage of the concavity of von Neumann entropy and also 
the use of a continuity bound on conditional entropy by Winter* to bound the 
difference in conditional entropy between states based on the “Reflect” case 
and the “Measure” case:

| S( A1
Z | E)σ−S( A1

Z | E)ν |≤ϵ+(1+ϵ)⋅h(
ϵ

1+ϵ )

where: 
1
2

||σ AE−νAE ||≤ϵ≤1

*: A. Winter. Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy 
distance and energy constraints. Communications in Mathematical Physics, 347(1):291-313, 2016



44

Summing it all up...
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Final Key-Rate Expression
● In summary, we prove the key-rate of the SQKD protocol 

is bounded by:

1−h(QX )−δ      if 1−h(QX)≥2δ

1
2
(1−h(QX ))     otherwise

g (Q ,QX )=

δ=2Q (1−Q)+( 1
2
+2Q (1−Q))⋅h( 4Q(1−Q)

1+4Q (1−Q) )

where:

key-rate≥g (Q ,QX )−h(Q)
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Final Key-Rate Expression
● In summary, we prove the key-rate of the SQKD protocol 

is bounded by:

1−h(QX )−δ      if 1−h(QX)≥2δ

1
2
(1−h(QX ))     otherwise

g (Q ,QX )=

δ=2Q (1−Q)+( 1
2
+2Q (1−Q))⋅h( 4Q(1−Q)

1+4Q (1−Q) )

where:

key-rate≥g (Q ,QX )−h(Q)

Old proof of security required multiple pages to fit equation....



47

Noise Tolerance Results

Old Proof [14] New Proof With MM [17]

Q
X
 = Q 5.34% 6.14% 11%

Q
X
=2Q(1-Q) 4.57% 4.82% 7.9%

Q
X
 = ½ Q 5.92% 7.5% 15.12%

Our new key-rate bound provides a better noise tolerance than prior 
work without mismatched measurements (MM).

However, it is not as high as results with MM.

This is not surprising – with MM requires the collection of 18 different 
measurement statistics to bound the key-rate.

Here we use only 4: Q (forwards and backwards); Q
X
; and p

0
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Future Work
● Can the bound be improved?

● We only considered collective attacks – does the usual 
techniques of applying de Finetti work here?

● We suspect so, but do not have a formal proof
● Difficulty is in the fact that we took advantage 

of the “restricted collective attack”
● Can this technique be extended to other SQKD protocols?

● Or other two-way protocols that do not have 
certain “symmetry” properties?

● What about a finite-key analysis?
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Thank you! Questions?
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