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Quantum Key Distribution (QKD)
1 Allows two users - Alice (A) and Bob (B) - to establish a

shared secret key
2 Secure against an all powerful adversary

Does not require any computational assumptions
Attacker bounded only by the laws of physics
Something that is not possible using classical means only

3 Accomplished using a quantum communication channel

Figure: Typical QKD Setup



QKD in Practice

1 Quantum Key Distribution is here already
2 Several companies produce commercial QKD equipment

1 MagiQ Technologies in NY
2 id Quantique in Geneva
3 SeQureNet in Paris
4 Quintessence Labs in Australia

3 Have also been used in various applications:
1 In 2007, QKD was used to transmit ballot results for national

elections in Switzerland
2 Has also been used to carry out bank transactions



Quantum Key Distribution

1 QKD Protocols typically operate by first having A and B
communicate using qubits.

2 Several iterations of this pass defining the quantum
communication stage

3 Results in A and B each holding a raw key, a string of
classical bits that is:

Partially correlated
Partially secret



Quantum Key Distribution (continued)

1 Due to certain properties of quantum communication, E ’s
attack introduces noise into the quantum channel

2 The amount of noise correlates directly with the maximal
information E holds on the raw key

3 If the noise level is “too high” then A and B must abort

4 Otherwise, if it is lower than some security threshold τQ , they
may distill a secure secret key (using error correction and
privacy amplification)

5 Question: What is τQ?



Noise Threshold

1 While τQ is known for many protocols (e.g., for BB84 it is
11% [1]), many newer protocols have no such bound or only
lower-bounds.

2 Especially problematic are two-way protocols which hold
numerous practical advantages (important, since QKD
protocols are available with current-day technology!)

Figure: A Two-Way QKD Protocol



Our Goal

1 We propose a real-coded GA which searches over the space of
E ’s attack operators to find an upper-bound on τQ for general
QKD protocols both one-way and two-way (and n-way)

2 Useful for protocols where no rigorous proof of security exists

3 Lower-bounds are often easier to prove mathematically; this
tool gives researchers an upper-bound

4 Also: useful tool for researchers to test a new protocol before
going into mathematical details (e.g., to see if it is secure)

5 Can be used to quickly test (and discover) new conjectures in
quantum cryptography



Related Work

1 Numerous authors have applied evolutionary techniques to
problems in quantum computation [2, 3, 4, 5]

2 Most deal with finding operators (algorithms) to solve certain
computational problems

3 In an extended abstract [6] we first proposed the idea of using
a GA to analyze QKD protocols

4 In this paper, we extend this technique to work with more
general QKD protocols and perform a more thorough analysis;
we also add new abilities to the algorithm.

5 To our knowledge, we are the first to apply evolutionary
techniques successfully to analyze the security of QKD
protocols according to state-of-the-art definitions of QKD
security



Background



Quantum Key Distribution

1 A QKD protocol first performs the quantum communication
(QC) stage

2 A and B communicate by passing qudits to one-another over
several iterations

3 E captures and “probes” each passing qudit (no-cloning!)
4 Two events: A and B use an iteration for raw key distillation

or parameter estimation (how noisy is the channel?)

Announced publicly after the fact...



Quantum Key Distribution

1 After the QC stage, A and B have a classical raw key...

2 ... and E has a large quantum system in her perfect quantum
memory.

3 If the noise is “small enough” the users run Error Correction
and Privacy Amplification (using a public authenticated
classical channel)

4 Takes a raw key of N-bits and outputs a secret key of size:

`(N) ≤ N

(possibly `(N) = 0 if E has too much information).

5 Question: Given a noise rate of Q, what is `(N) and when is
it zero?



Modeling E ’s attack

1 We consider collective attacks (usually good enough!)

2 Let K be the number of times a qudit passes through E in a
single iteration (usually K = 1 or 2).

3 Then, E ’s attack is a collection of K unitary operators
(without loss of generality, finite dimension) {U1, · · · ,UK}

Ui is unitary if Ui · U∗
i = I .

4 These operators act on the traveling qudit and also E ’s
private quantum memory



QKD Key Rate

1 Ultimately, a QKD protocol may be modeled mathematically
as a (possibly large) matrix with complex entries (a Density
Operator) “ρ”

2 It was shown in [1] that:

# secret bits = `(N) ≈ N · r ,

where:

r = inf
U

r(U) = inf(

r(U)︷ ︸︸ ︷
S(AE )− S(E )− H(A|B)) ≤ 1,

and S(AE ) (resp. S(E )) is the von Neumann entropy of the
Density Operator modeling A and E ’s (resp. E ’s) system.

3 To compute `(N) need the von Neumann entropy of ρ which
means finding the eigenvalues of ρ



Algorithm Idea

1 We will search over the space of all attack operators U = {Ui}
2 Try to find U that induces a minimal amount of noise (i.e., it

is not very invasive as far as A and B are concerned), yet this
same U should cause R(U) = 0.

3 Once such an operator is found, it may be concluded that the
protocol in question cannot possibly withstand noise levels
higher than that induced by U (the infimum will be even
smaller).



Algorithm Idea

Our algorithm, therefore, finds upper-bounds on the maximally
tolerated noise threshold of a given QKD protocol



Solution Representation



Some Basic Quantum Terminology

1 A quantum system is modeled as a vector |ψ〉 in a complex
vector space

2 Example:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)

|+〉 =

(
1√
2

− 1√
2

)
|e2〉 =


.2
.01
−.07

0


3 If |ψ〉 and |φ〉 are two vectors, we write:

〈ψ|φ〉

to be their inner-product.



Some Basic Quantum Terminology

1 If |ψ〉 is an n-dimensional vector representing a quantum
system and |φ〉 is an m-dimensional vector representing a
different system...

2 ... then we model the joint state as:

|ψ, φ〉 = |ψ〉 ⊗ |φ〉

which is an n · n dimensional vector.



Solution Representation

1 E ’s attack is a collection of unitary operators {U1, · · · ,UK}
such that Ui · U∗i = I .

2 Requires O(n2) variables to describe

3 But: we don’t need the entire operator, we only need to know
its action on certain “basis states”



Solution Representation

1 Example Round 1, T = 2: We only need U1’s action on basis
states: |0, 0〉, |1, 0〉:

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉
U1 |1, 0〉 = |0, e1

2〉+ |1, e1
3〉

(Can be generalized to T > 2; i.e., |i , 0〉)
2 Each |e1

i 〉 is a complex vector (dimension specified by user)

3 Unitarity of U1 forces the condition:

〈e1
0 |e1

0〉+ 〈e1
1 |e1

1〉 = 1

〈e1
2 |e1

2〉+ 〈e1
3 |e1

3〉 = 1

〈e1
0 |e1

2〉+ 〈e1
1 |e1

3〉 = 0



Solution Representation: Round 1

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉 U1 |1, 0〉 = |0, e1
2〉+ |1, e1

3〉

1 Let T be dimension of Transit Space (e.g., T = 2) and d1 the
dimension of E ’s round 1 quantum memory (upper-bounded
by T 2)

2 A candidate solution for round 1 is a collection of T vectors:

G1
0 = (g1

0 , g
1
1 , · · · , g1

T−1)

G1
1 = (g1

T , g
1
T+1, · · · , g1

2T−1)

...

with each g1
i consisting of d1 random complex numbers

3 Clearly, this does not satisfy the required unitary conditions...



Solution Representation: Round 1

1 Next, run the Gram-Schmidt process to orthogonalize the
vectors:

G1
0  F1

0 = (f 1
0 , f

1
1 , · · · , f 1

T−1)

G1
1  F1

1 = (f 1
T , f

1
T+1, · · · , f 1

2T−1)

...



Solution Representation: Example

Let T = 2, then we need states (vectors) |e0
i 〉:

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉 U1 |1, 0〉 = |0, e1
2〉+ |1, e1

3〉

such that:

〈e1
0 |e1

0〉+ 〈e1
1 |e1

1〉 = 1

〈e1
2 |e1

2〉+ 〈e1
3 |e1

3〉 = 1

〈e1
0 |e1

2〉+ 〈e1
1 |e1

3〉 = 0

We have orthonormal vectors:

F1
0 = (f 1

0 , f
1
1 )

F1
1 = (f 1

2 , f
1
3 )



Solution Representation

To evolve the entire unitary operator U1 would require
(T · d1)2 variables

Instead, we require 2d1 · T 2

If T = 2 and d1 = 4 (common values), then we have 32
variables (as opposed to 64)



Solution Representation: Round 2

1 The second round attack (i.e., U2) is a little more involved

2 It acts on the transit space, E ’s last memory “block”
(dimension d1) and a new memory block of dimension d2.

3 We fix a basis for E ’s last-used memory ancilla, based on
U1’s action, and write U2’s action on basis states of the form
|i , j , 0〉 where i = 0, 1, · · ·T − 1, and j = 0, 1, · · · , d1 − 1.

4 We then follow the process described above



Solution Representation: Number of Variables

Evolve Entire Unitary Operators:

Round 1: U1 requires T 2 · d2
1 variables

Round 2: U2 requires T 2 · d2
1 · d2

2 variables

Example: T = 2, d1 = 4, d2 = 64 (most powerful attack)

Requires 64 + 262144 = 262, 208 variables

Evolve Unitary Description (Our Method):

Round 1: requires 2T 2d1 variables

Round 2: requires 2T 2d2
1 d2 variables

Example: T = 2, d1 = 4, d2 = 64

Requires 32 + 8192 = 8, 224 variables



The Algorithm



Genetic Operators

1 A candidate solution is a collection of complex vectors Gj
i

2 Initial population generated by choosing real and imaginary
parts randomly in the interval [−2, 2].

3 Crossover is simple one-point crossover (choosing a different
crossover point for each vector Gj

i

4 Mutation will alter 25% of all elements by adding a small
ε ∈ [−1/10, 1/10] to real and imaginary parts

5 After any genetic operation, the vectors F are reconstructed
using the G.S. process from which the |e j

i 〉 states are derived.



Algorithm: Input

1 The algorithm takes as input a description of the QKD
protocol including:

How is a key-bit created? (1x)
How is the noise measured? (1x or more)

2 Description created in a custom-made language...



Algorithm: Example Input (BB84 [7])

c r e a t e space (AKey : 2 , BKey : 2 , Ba s i s : 2 , T r a n s i t : 2 , Eve1 : 4 )

w i th prob .25 p r epa r e ( Ba s i s =0, T r a n s i t =0, AKey=0)
e l s e w i t h prob .25 p r epa r e ( Ba s i s =0, T r a n s i t =1, AKey=1)
e l s e w i t h prob .25 p r epa r e ( Ba s i s =1, T r a n s i t =0, AKey=0)
e l s e w i t h prob .25 p r epa r e ( Ba s i s =1, T r a n s i t =1, AKey=1)
endwith

app l y c o n d i t i o n a l op H to T r a n s i t i f ( Ba s i s =1)

a t t a c k ( T r a n s i t )

app l y c o n d i t i o n a l op H to T r a n s i t i f ( Ba s i s =1)

measure T r a n s i t save i n BKey

t r a c e out T r a n s i t

save as p r imary



Fitness

1 From the above descriptions and a candidate attack operator,
density operators are constructed

2 From this, we may compute the noise level Q and the key rate:

R(U) = S(AE )− S(E )− H(A|B)

3 Goal is to find U which minimizes the noise (less invasive) and
minimizes the key-rate (more information to E ).

4 We use the fitness function:

fit(U) = pf (Q − τQ)2 + (1− pf )(R + .01)2,

where τQ is a user-specified target noise rate (usually 0) and
pf is a weight (usually 1/2).



The Algorithm

1 Create initial population

2 Take best-fit solution U; if R(U) < 0 then save noise level as
Q̂

3 Evolve next generation

4 Goto 2 until some stopping condition is met

5 Output Q̂

It is guaranteed that the given protocol cannot tolerate a noise
level of Q̂



Evaluation



BB84

1 First test: BB84 [7]

2 Well known that the tolerated error rate is 11%
3 Algorithm Output (50 runs):

Best: 11.01%
Average: 11.07%
Standard deviation: 4.0× 10−4



BB84: Insecure Version

1 Tested an insecure version of BB84

2 Algorithm found a solution with little noise (Q < 0.00087)
and a zero key-rate.

3 Thus, our algorithm can be used to quickly check if a protocol
is secure.



B92

1 Next test: B92 [8] a minimal QKD protocol more sensitive to
noise

2 Algorithm Output (50 runs):

Average: 7.73%
Standard deviation: 1.5× 10−4

3 Current best lower-bound is 6.5% [9]; actual tolerated
threshold somewhere between these two results.

4 Often it is easier to prove rigorous lower-bounds; our analysis
software provides upper-bounds



SARG04

1 SARG04 [10] an extended version of B92

2 Theoretical noise threshold: 9.68%
3 Algorithm Output (50 runs):

Average: 10.25%
Standard deviation: 3.5× 10−4



Two-Way: SQKD

1 We consider a new class of two-way QKD protocol: a
semi-quantum protocol [11]

2 Theoretical lower-bound: 7.4%
3 Algorithm Output (50 runs):

Average: 8.7%
Standard deviation: 5.6× 10−3



Insecure SQKD

1 An SQKD protocol requires that the user B send a qubit in an
exact state back to A under certain events

2 If we alter the protocol so that B sends a different state, the
resulting protocol is insecure according to our algorithm

3 We verified this mathematically



Mediated QKD

1 Finally, we evaluated a mediated QKD protocol [12]

2 Requires the attacker to prepare qubits, send one to A
another to B, measure the returning state, and send a
classical message to the users

3 Thus, our algorithm must evolve a strategy that optimizes E ’s
information, but also interacts with the two users meaningfully



Mediated QKD



Mediated QKD

1 Requires 7 different noise measurements

2 Algorithm successfully evolved an attack strategy which did
not cause A and B to abort

3 Theoretical lower-bound: 10.8%
4 Algorithm Output (28 runs):

Average: 12.5%
Standard deviation: 2.59× 10−2



Future Work



Future Work

1 Different solution representation (e.g., gate-based)

2 Consider practical attacks

3 Different attack models (e.g., noisy quantum storage)

4 Also, multi-photon attacks and photon-losses



Thank you! Questions?
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