
A Genetic Algorithm to Analyze the
Security of Quantum Cryptographic

Protocols

Walter O. Krawec
walter.krawec@gmail.com

Iona College
Computer Science Department

New Rochelle, NY USA

IEEE WCCI July, 2016

Quantum Key Distribution (QKD)
1 Allows two users - Alice (A) and Bob (B) - to establish a

shared secret key
2 Secure against an all powerful adversary

Does not require any computational assumptions
Attacker bounded only by the laws of physics
Something that is not possible using classical means only

3 Accomplished using a quantum communication channel

Figure: Typical QKD Setup

QKD in Practice

1 Quantum Key Distribution is here already
2 Several companies produce commercial QKD equipment

1 MagiQ Technologies in NY
2 id Quantique in Geneva
3 SeQureNet in Paris
4 Quintessence Labs in Australia

3 Have also been used in various applications:
1 In 2007, QKD was used to transmit ballot results for national

elections in Switzerland
2 Has also been used to carry out bank transactions

Quantum Key Distribution

1 QKD Protocols typically operate by first having A and B
communicate using qubits.

2 Several iterations of this pass defining the quantum
communication stage

3 Results in A and B each holding a raw key, a string of
classical bits that is:

Partially correlated
Partially secret

Quantum Key Distribution (continued)

1 Due to certain properties of quantum communication, E ’s
attack introduces noise into the quantum channel

2 The amount of noise correlates directly with the maximal
information E holds on the raw key

3 If the noise level is “too high” then A and B must abort

4 Otherwise, if it is lower than some security threshold τQ , they
may distill a secure secret key (using error correction and
privacy amplification)

5 Question: What is τQ?

Noise Threshold

1 While τQ is known for many protocols (e.g., for BB84 it is
11% [1]), many newer protocols have no such bound or only
lower-bounds.

2 Especially problematic are two-way protocols which hold
numerous practical advantages (important, since QKD
protocols are available with current-day technology!)

Figure: A Two-Way QKD Protocol

Our Goal

1 We propose a real-coded GA which searches over the space of
E ’s attack operators to find an upper-bound on τQ for general
QKD protocols both one-way and two-way (and n-way)

2 Useful for protocols where no rigorous proof of security exists

3 Lower-bounds are often easier to prove mathematically; this
tool gives researchers an upper-bound

4 Also: useful tool for researchers to test a new protocol before
going into mathematical details (e.g., to see if it is secure)

5 Can be used to quickly test (and discover) new conjectures in
quantum cryptography

Related Work

1 Numerous authors have applied evolutionary techniques to
problems in quantum computation [2, 3, 4, 5]

2 Most deal with finding operators (algorithms) to solve certain
computational problems

3 In an extended abstract [6] we first proposed the idea of using
a GA to analyze QKD protocols

4 In this paper, we extend this technique to work with more
general QKD protocols and perform a more thorough analysis;
we also add new abilities to the algorithm.

5 To our knowledge, we are the first to apply evolutionary
techniques successfully to analyze the security of QKD
protocols according to state-of-the-art definitions of QKD
security

Background

Quantum Key Distribution

1 A QKD protocol first performs the quantum communication
(QC) stage

2 A and B communicate by passing qudits to one-another over
several iterations

3 E captures and “probes” each passing qudit (no-cloning!)
4 Two events: A and B use an iteration for raw key distillation

or parameter estimation (how noisy is the channel?)

Announced publicly after the fact...

Quantum Key Distribution

1 After the QC stage, A and B have a classical raw key...

2 ... and E has a large quantum system in her perfect quantum
memory.

3 If the noise is “small enough” the users run Error Correction
and Privacy Amplification (using a public authenticated
classical channel)

4 Takes a raw key of N-bits and outputs a secret key of size:

`(N) ≤ N

(possibly `(N) = 0 if E has too much information).

5 Question: Given a noise rate of Q, what is `(N) and when is
it zero?

Modeling E ’s attack

1 We consider collective attacks (usually good enough!)

2 Let K be the number of times a qudit passes through E in a
single iteration (usually K = 1 or 2).

3 Then, E ’s attack is a collection of K unitary operators
(without loss of generality, finite dimension) {U1, · · · ,UK}

Ui is unitary if Ui · U∗
i = I .

4 These operators act on the traveling qudit and also E ’s
private quantum memory

QKD Key Rate

1 Ultimately, a QKD protocol may be modeled mathematically
as a (possibly large) matrix with complex entries (a Density
Operator) “ρ”

2 It was shown in [1] that:

secret bits = `(N) ≈ N · r ,

where:

r = inf
U

r(U) = inf(

r(U)︷ ︸︸ ︷
S(AE)− S(E)− H(A|B)) ≤ 1,

and S(AE) (resp. S(E)) is the von Neumann entropy of the
Density Operator modeling A and E ’s (resp. E ’s) system.

3 To compute `(N) need the von Neumann entropy of ρ which
means finding the eigenvalues of ρ

Algorithm Idea

1 We will search over the space of all attack operators U = {Ui}
2 Try to find U that induces a minimal amount of noise (i.e., it

is not very invasive as far as A and B are concerned), yet this
same U should cause R(U) = 0.

3 Once such an operator is found, it may be concluded that the
protocol in question cannot possibly withstand noise levels
higher than that induced by U (the infimum will be even
smaller).

Algorithm Idea

Our algorithm, therefore, finds upper-bounds on the maximally
tolerated noise threshold of a given QKD protocol

Solution Representation

Some Basic Quantum Terminology

1 A quantum system is modeled as a vector |ψ〉 in a complex
vector space

2 Example:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)

|+〉 =

(
1√
2

− 1√
2

)
|e2〉 =


.2
.01
−.07

0


3 If |ψ〉 and |φ〉 are two vectors, we write:

〈ψ|φ〉

to be their inner-product.

Some Basic Quantum Terminology

1 If |ψ〉 is an n-dimensional vector representing a quantum
system and |φ〉 is an m-dimensional vector representing a
different system...

2 ... then we model the joint state as:

|ψ, φ〉 = |ψ〉 ⊗ |φ〉

which is an n · n dimensional vector.

Solution Representation

1 E ’s attack is a collection of unitary operators {U1, · · · ,UK}
such that Ui · U∗i = I .

2 Requires O(n2) variables to describe

3 But: we don’t need the entire operator, we only need to know
its action on certain “basis states”

Solution Representation

1 Example Round 1, T = 2: We only need U1’s action on basis
states: |0, 0〉, |1, 0〉:

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉
U1 |1, 0〉 = |0, e1

2〉+ |1, e1
3〉

(Can be generalized to T > 2; i.e., |i , 0〉)
2 Each |e1

i 〉 is a complex vector (dimension specified by user)

3 Unitarity of U1 forces the condition:

〈e1
0 |e1

0〉+ 〈e1
1 |e1

1〉 = 1

〈e1
2 |e1

2〉+ 〈e1
3 |e1

3〉 = 1

〈e1
0 |e1

2〉+ 〈e1
1 |e1

3〉 = 0

Solution Representation: Round 1

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉 U1 |1, 0〉 = |0, e1
2〉+ |1, e1

3〉

1 Let T be dimension of Transit Space (e.g., T = 2) and d1 the
dimension of E ’s round 1 quantum memory (upper-bounded
by T 2)

2 A candidate solution for round 1 is a collection of T vectors:

G1
0 = (g1

0 , g
1
1 , · · · , g1

T−1)

G1
1 = (g1

T , g
1
T+1, · · · , g1

2T−1)

...

with each g1
i consisting of d1 random complex numbers

3 Clearly, this does not satisfy the required unitary conditions...

Solution Representation: Round 1

1 Next, run the Gram-Schmidt process to orthogonalize the
vectors:

G1
0 F1

0 = (f 1
0 , f

1
1 , · · · , f 1

T−1)

G1
1 F1

1 = (f 1
T , f

1
T+1, · · · , f 1

2T−1)

...

Solution Representation: Example

Let T = 2, then we need states (vectors) |e0
i 〉:

U1 |0, 0〉 = |0, e1
0〉+ |1, e1

1〉 U1 |1, 0〉 = |0, e1
2〉+ |1, e1

3〉

such that:

〈e1
0 |e1

0〉+ 〈e1
1 |e1

1〉 = 1

〈e1
2 |e1

2〉+ 〈e1
3 |e1

3〉 = 1

〈e1
0 |e1

2〉+ 〈e1
1 |e1

3〉 = 0

We have orthonormal vectors:

F1
0 = (f 1

0 , f
1
1)

F1
1 = (f 1

2 , f
1
3)

Solution Representation

To evolve the entire unitary operator U1 would require
(T · d1)2 variables

Instead, we require 2d1 · T 2

If T = 2 and d1 = 4 (common values), then we have 32
variables (as opposed to 64)

Solution Representation: Round 2

1 The second round attack (i.e., U2) is a little more involved

2 It acts on the transit space, E ’s last memory “block”
(dimension d1) and a new memory block of dimension d2.

3 We fix a basis for E ’s last-used memory ancilla, based on
U1’s action, and write U2’s action on basis states of the form
|i , j , 0〉 where i = 0, 1, · · ·T − 1, and j = 0, 1, · · · , d1 − 1.

4 We then follow the process described above

Solution Representation: Number of Variables

Evolve Entire Unitary Operators:

Round 1: U1 requires T 2 · d2
1 variables

Round 2: U2 requires T 2 · d2
1 · d2

2 variables

Example: T = 2, d1 = 4, d2 = 64 (most powerful attack)

Requires 64 + 262144 = 262, 208 variables

Evolve Unitary Description (Our Method):

Round 1: requires 2T 2d1 variables

Round 2: requires 2T 2d2
1 d2 variables

Example: T = 2, d1 = 4, d2 = 64

Requires 32 + 8192 = 8, 224 variables

The Algorithm

Genetic Operators

1 A candidate solution is a collection of complex vectors Gj
i

2 Initial population generated by choosing real and imaginary
parts randomly in the interval [−2, 2].

3 Crossover is simple one-point crossover (choosing a different
crossover point for each vector Gj

i

4 Mutation will alter 25% of all elements by adding a small
ε ∈ [−1/10, 1/10] to real and imaginary parts

5 After any genetic operation, the vectors F are reconstructed
using the G.S. process from which the |e j

i 〉 states are derived.

Algorithm: Input

1 The algorithm takes as input a description of the QKD
protocol including:

How is a key-bit created? (1x)
How is the noise measured? (1x or more)

2 Description created in a custom-made language...

Algorithm: Example Input (BB84 [7])

c r e a t e space (AKey : 2 , BKey : 2 , Ba s i s : 2 , T r a n s i t : 2 , Eve1 : 4)

w i th prob .25 p r epa r e (Ba s i s =0, T r a n s i t =0, AKey=0)
e l s e w i t h prob .25 p r epa r e (Ba s i s =0, T r a n s i t =1, AKey=1)
e l s e w i t h prob .25 p r epa r e (Ba s i s =1, T r a n s i t =0, AKey=0)
e l s e w i t h prob .25 p r epa r e (Ba s i s =1, T r a n s i t =1, AKey=1)
endwith

app l y c o n d i t i o n a l op H to T r a n s i t i f (Ba s i s =1)

a t t a c k (T r a n s i t)

app l y c o n d i t i o n a l op H to T r a n s i t i f (Ba s i s =1)

measure T r a n s i t save i n BKey

t r a c e out T r a n s i t

save as p r imary

Fitness

1 From the above descriptions and a candidate attack operator,
density operators are constructed

2 From this, we may compute the noise level Q and the key rate:

R(U) = S(AE)− S(E)− H(A|B)

3 Goal is to find U which minimizes the noise (less invasive) and
minimizes the key-rate (more information to E).

4 We use the fitness function:

fit(U) = pf (Q − τQ)2 + (1− pf)(R + .01)2,

where τQ is a user-specified target noise rate (usually 0) and
pf is a weight (usually 1/2).

The Algorithm

1 Create initial population

2 Take best-fit solution U; if R(U) < 0 then save noise level as
Q̂

3 Evolve next generation

4 Goto 2 until some stopping condition is met

5 Output Q̂

It is guaranteed that the given protocol cannot tolerate a noise
level of Q̂

Evaluation

BB84

1 First test: BB84 [7]

2 Well known that the tolerated error rate is 11%
3 Algorithm Output (50 runs):

Best: 11.01%
Average: 11.07%
Standard deviation: 4.0× 10−4

BB84: Insecure Version

1 Tested an insecure version of BB84

2 Algorithm found a solution with little noise (Q < 0.00087)
and a zero key-rate.

3 Thus, our algorithm can be used to quickly check if a protocol
is secure.

B92

1 Next test: B92 [8] a minimal QKD protocol more sensitive to
noise

2 Algorithm Output (50 runs):

Average: 7.73%
Standard deviation: 1.5× 10−4

3 Current best lower-bound is 6.5% [9]; actual tolerated
threshold somewhere between these two results.

4 Often it is easier to prove rigorous lower-bounds; our analysis
software provides upper-bounds

SARG04

1 SARG04 [10] an extended version of B92

2 Theoretical noise threshold: 9.68%
3 Algorithm Output (50 runs):

Average: 10.25%
Standard deviation: 3.5× 10−4

Two-Way: SQKD

1 We consider a new class of two-way QKD protocol: a
semi-quantum protocol [11]

2 Theoretical lower-bound: 7.4%
3 Algorithm Output (50 runs):

Average: 8.7%
Standard deviation: 5.6× 10−3

Insecure SQKD

1 An SQKD protocol requires that the user B send a qubit in an
exact state back to A under certain events

2 If we alter the protocol so that B sends a different state, the
resulting protocol is insecure according to our algorithm

3 We verified this mathematically

Mediated QKD

1 Finally, we evaluated a mediated QKD protocol [12]

2 Requires the attacker to prepare qubits, send one to A
another to B, measure the returning state, and send a
classical message to the users

3 Thus, our algorithm must evolve a strategy that optimizes E ’s
information, but also interacts with the two users meaningfully

Mediated QKD

Mediated QKD

1 Requires 7 different noise measurements

2 Algorithm successfully evolved an attack strategy which did
not cause A and B to abort

3 Theoretical lower-bound: 10.8%
4 Algorithm Output (28 runs):

Average: 12.5%
Standard deviation: 2.59× 10−2

Future Work

Future Work

1 Different solution representation (e.g., gate-based)

2 Consider practical attacks

3 Different attack models (e.g., noisy quantum storage)

4 Also, multi-photon attacks and photon-losses

Thank you! Questions?

References I

Renato Renner, Nicolas Gisin, and Barbara Kraus.
Information-theoretic security proof for quantum-key-distribution protocols.
Phys. Rev. A, 72:012332, Jul 2005.

S. R. Hutsell and G. W. Greenwood.
Applying evolutionary techniques to quantum computing problems.
In IEEE Congress on Evolutionary Computation (CEC 2007), pages 4081–4085,
September 2007.

M. Lukac and M. Perkowski.
Evolving quantum circuits using genetic algorithm.
In EH ’02: Proceedings of the 2002 NASA/DoD Conference on Evolvable
Hardware, pages 177–185, 2002.

L. Spector.
Automatic Quantum Computer Programming: A Genetic Programming
Approach.
Kluwer Academic Publishers, Boston, MA, 2004.

Walter O Krawec.
An algorithm for evolving multiple quantum operators for arbitrary quantum
computational problems.
In Proceedings of the 2014 conference companion on Genetic and evolutionary
computation companion, pages 59–60. ACM, 2014.

References II

Walter O Krawec.
Using evolutionary techniques to analyze the security of quantum key
distribution protocols.
In Proceedings of the 2014 conference companion on Genetic and evolutionary
computation companion, pages 171–172. ACM, 2014.

Charles H Bennett and Gilles Brassard.
Quantum cryptography: Public key distribution and coin tossing.
In Proceedings of IEEE International Conference on Computers, Systems and
Signal Processing, volume 175. New York, 1984.

Charles H. Bennett.
Quantum cryptography using any two nonorthogonal states.
Phys. Rev. Lett., 68:3121–3124, May 1992.

Ryutaroh Matsumoto.
Improved asymptotic key rate of the b92 protocol.
In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium
on, pages 351–353. IEEE, 2013.

Antonio Acin, Nicolas Gisin, and Valerio Scarani.
Coherent-pulse implementations of quantum cryptography protocols resistant to
photon-number-splitting attacks.
Phys. Rev. A, 69:012309, Jan 2004.

References III

Michel Boyer, D. Kenigsberg, and T. Mor.
Quantum key distribution with classical bob.
In Quantum, Nano, and Micro Technologies, 2007. ICQNM ’07. First
International Conference on, pages 10–10, 2007.

Walter O Krawec.
An improved asymptotic key rate bound for a mediated semi-quantum key
distribution protocol.
Quantum Information and Computation, 16(9 & 10):0813–0834, 2016.

	Background
	Solution Representation
	The Algorithm
	Evaluation
	Future Work
	Thank you! Questions?

