Asymptotic Analysis of a Three State Quantum Cryptographic Protocol

Walter O. Krawec walter.krawec@gmail.com

Iona College Computer Science Department New Rochelle, NY USA

IEEE ISIT

July, 2016

Quantum Key Distribution (QKD)

- Allows two users Alice (A) and Bob (B) to establish a shared secret key
- Secure against an all powerful adversary
 - Does not require any computational assumptions
 - Attacker bounded only by the laws of physics
 - Something that is not possible using classical means only
- Accomplished using a quantum communication channel

BB84 Quantum Quantum User User Adversary Eve В Α Quantum Memory shared shared secret secret kev kev

Figure: Typical QKD Setup

Three-State BB84

- In this work, we consider a three-state variant of the BB84 protocol first introduced in [1, 2]
- 2 We consider a generalized version of the protocol.
- 3 The quantum communication stage is as follows:
 - A chooses to send a state $|0\rangle$, $|1\rangle$, or $|a\rangle = \alpha |0\rangle + \sqrt{1 \alpha^2} |1\rangle$, for $\alpha \in (0, 1)$, with probability p/2, p/2, and 1 p respectively.
 - *B* chooses to measure in the $Z = \{|0\rangle, |1\rangle\}$ basis or the $\mathcal{A} = \{|a\rangle, |\bar{a}\rangle\}$ basis.
- 4 Notes:
 - When $\alpha=1/\sqrt{2}$ (thus $|a\rangle=|+\rangle$ and $|\bar{a}\rangle=|-\rangle$) this is exactly the three-state protocol considered in [1, 2]
 - 2 To improve efficiency, A and B may choose p close to one.

Three-State BB84

- In this work, we consider a three-state variant of the BB84 protocol first introduced in [1, 2]
- We consider a generalized version of the protocol.
- The quantum communication stage is as follows:
 - A chooses to send a state $|0\rangle$, $|1\rangle$, or $|a\rangle = \alpha |0\rangle + \sqrt{1 \alpha^2} |1\rangle$, for $\alpha \in (0, 1)$, with probability p/2, p/2, and 1 p respectively.
 - *B* chooses to measure in the $Z = \{|0\rangle, |1\rangle\}$ basis or the $\mathcal{A} = \{|a\rangle, |\bar{a}\rangle\}$ basis.
- O Notes:
 - When $\alpha=1/\sqrt{2}$ (thus $|a\rangle=|+\rangle$ and $|\bar{a}\rangle=|-\rangle$) this is exactly the three-state protocol considered in [1, 2]
 - 2 To improve efficiency, A and B may choose p close to one.

Mismatched Measurement Outcomes

- Note that parties cannot measure the probability of E's attack flipping a $|\bar{a}\rangle$ to a $|a\rangle$ (unlike the "full" four-state BB84 protocol [3])
- We However, we will use mismatched measurement outcomes to overcome this limitation
- **1** Let $p_{i,j}$, for $i,j \in \{0,1,a\}$ be the probability that, if A sends $|i\rangle$ then B measures $|j\rangle$ (after E's attack).
- We will utilize all statistics including those of the form $p_{0,a}, p_{1,a}$, and $p_{a,j}$ to derive our key-rate expression
 - I.e., we will not discard measurement results when A and B choose different bases.
- Doing so allows us to prove that the three-state BB84 has the same maximally tolerated error rate as the full four-state BB84 (i.e., 11%).

Related Work

We are not the first to show mismatched measurement results are useful:

- In 1993, Barnett et al., [4] used them to detect an attacker with greater probability for measure-and-resend attacks
- In [5] (2008) they were shown to produce superior key-rates for the four-state and six-state BB84 for certain quantum channels
- They have been used in the analysis of certain device independent protocols [6].

Related Work (continued)

In [7] mismatched measurement results were used to analyze the generalized three-state BB84 protocol we consider in our paper, however:

- We derive an alternative approach which can also be applied to several other protocols (as we comment on later). Thus, we also provide an alternative proof of the result in [7] that this three-state protocol can withstand up to 11% error if a symmetric attack is used.
- ② Furthermore, in our work we derive a key-rate expression for any arbitrary quantum channel, parameterized by all statistics $p_{i,j}$ (only symmetric attacks were considered in [7]).

Key Rate Bound

QKD Security

- After the quantum communication stage and parameter estimation, A and B hold an N-bit raw key
- They then run an error correcting protocol and privacy amplification protocol
- **3** Result is an $\ell(N)$ -bit secret key
- We compute a lower-bound on the key-rate of this three-state protocol in the asymptotic scenario:

$$r = \lim_{N \to \infty} \frac{\ell(N)}{N}$$

• We first consider collective attacks and so by [8, 9]:

$$r = \inf S(A|E) - H(A|B).$$

Collective Attack

- Without loss of generality, we may model E's collective attack as a unitary U, acting on the qubit and E's private memory.
- 2 Furthermore, we may assume E's memory is cleared to some pure "zero" state.
- Thus:

$$U |0,0\rangle = |0,e_0\rangle + |1,e_1\rangle$$

 $U |1,0\rangle = |0,e_2\rangle + |1,e_3\rangle$

Joint Quantum State

- **1** To compute $r = \inf S(A|E) H(A|B)$, we need to model the joint-quantum state, held by A, B, and E, conditioning on the event A and B use this iteration for their raw key. I.e.,:
 - A sends either $|0\rangle$ or $|1\rangle$ and B measures in the $Z=\{|0\rangle\,,|1\rangle\}$ basis.
- 2 This state is easily computed:

$$\begin{split} \rho_{ABE} &= \frac{1}{2} \big(\left. \left| 00 \right\rangle \left\langle 00 \right|_{AB} \otimes \left| e_0 \right\rangle \left\langle e_0 \right| + \left| 11 \right\rangle \left\langle 11 \right|_{AB} \otimes \left| e_3 \right\rangle \left\langle e_3 \right| \\ &+ \left| 01 \right\rangle \left\langle 01 \right|_{AB} \otimes \left| e_1 \right\rangle \left\langle e_1 \right| + \left| 10 \right\rangle \left\langle 10 \right|_{AB} \otimes \left| e_2 \right\rangle \left\langle e_2 \right| \big). \end{split}$$

$$\Rightarrow \rho_{AE} = \frac{1}{2} (\left| 0 \right\rangle \left\langle 0 \right|_{A} \otimes \left[\left| e_{0} \right\rangle \left\langle e_{0} \right| + \left| e_{1} \right\rangle \left\langle e_{1} \right| \right] \\ + \left| 1 \right\rangle \left\langle 1 \right|_{A} \otimes \left[\left| e_{2} \right\rangle \left\langle e_{2} \right| + \left| e_{3} \right\rangle \left\langle e_{3} \right| \right]).$$

Joint Quantum State

- **1** To compute $r = \inf S(A|E) H(A|B)$, we need to model the joint-quantum state, held by A, B, and E, conditioning on the event A and B use this iteration for their raw key. I.e.,:
 - A sends either $|0\rangle$ or $|1\rangle$ and B measures in the $Z = \{|0\rangle, |1\rangle\}$ basis.
- 2 This state is easily computed:

$$\rho_{ABE} = \frac{1}{2} (\left| 00 \right\rangle \left\langle 00 \right|_{AB} \otimes \left| e_0 \right\rangle \left\langle e_0 \right| + \left| 11 \right\rangle \left\langle 11 \right|_{AB} \otimes \left| e_3 \right\rangle \left\langle e_3 \right|$$

$$+ \left| 01 \right\rangle \left\langle 01 \right|_{AB} \otimes \left| e_1 \right\rangle \left\langle e_1 \right| + \left| 10 \right\rangle \left\langle 10 \right|_{AB} \otimes \left| e_2 \right\rangle \left\langle e_2 \right|).$$

$$\Rightarrow \rho_{AE} = \frac{1}{2} (\left| 0 \right\rangle \left\langle 0 \right|_{A} \otimes \left[\left| e_{0} \right\rangle \left\langle e_{0} \right| + \left| e_{1} \right\rangle \left\langle e_{1} \right| \right] \\ + \left| 1 \right\rangle \left\langle 1 \right|_{A} \otimes \left[\left| e_{2} \right\rangle \left\langle e_{2} \right| + \left| e_{3} \right\rangle \left\langle e_{3} \right| \right]).$$

Computing S(A|E)

Lemma

Given a density operator:

$$\rho_{AE} = \frac{1}{N} (|0\rangle \langle 0|_A \otimes (|e_0\rangle \langle e_0|_E + |e_1\rangle \langle e_1|_E)$$

$$+ |1\rangle \langle 1|_A \otimes (|e_2\rangle \langle e_2|_E + |e_3\rangle \langle e_3|_E)),$$

then:

$$S(A|E) \geq rac{N_0 + N_3}{N} \left[h\left(rac{N_0}{N_0 + N_3}
ight) - h(\lambda_{0,3})
ight] + rac{N_1 + N_2}{N} \left[h\left(rac{N_1}{N_1 + N_2}
ight) - h(\lambda_{1,2})
ight],$$

where $N_i = \langle e_i | e_i \rangle$ and:

$$\lambda_{i,j} = \frac{1}{2} + \frac{\sqrt{(N_i - N_j)^2 + 4Re^2 \left\langle e_i | e_j \right\rangle}}{2(N_i + N_j)}.$$

Parameter Estimation

$$U:|0\rangle\mapsto|0,e_0\rangle+|1,e_1\rangle \qquad \qquad |1\rangle\mapsto|0,e_2\rangle+|1,e_3\rangle$$

- **①** Clearly, we may measure $N_i = \langle e_i | e_i \rangle$
- 2 We therefore need only $Re\ \langle e_0|e_3\rangle$ and $Re\ \langle e_1|e_2\rangle$ (for $\lambda_{0,3}$ and $\lambda_{1,2}$)

Parameter Estimation (continued)

1 Linearity of E's attack operator U implies:

$$U|a\rangle = |0\rangle (\alpha |e_0\rangle + \beta |e_2\rangle) + |1\rangle (\alpha |e_1\rangle + \beta |e_3\rangle)$$

$$= |a\rangle (\alpha^2 |e_0\rangle + \alpha\beta |e_2\rangle + \alpha\beta |e_1\rangle + \beta^2 |e_3\rangle)$$

$$+ |\bar{a}\rangle (\beta\alpha |e_0\rangle + \beta^2 |e_2\rangle - \alpha^2 |e_1\rangle - \alpha\beta |e_3\rangle).$$

Let $\mathcal{R}_{i,j} = Re \langle e_i | e_j \rangle$. Then:

$$\begin{aligned} 1 - p_{a,a} &= Q_{\mathcal{A}} = \alpha^{2} \beta^{2} (N_{0} + N_{3}) + \beta^{4} N_{2} + \alpha^{4} N_{1} \\ &+ 2 (\beta^{3} \alpha \mathcal{R}_{0,2} - \beta \alpha^{3} \mathcal{R}_{0,1} - \alpha^{2} \beta^{2} \mathcal{R}_{0,3} \\ &- \alpha^{2} \beta^{2} \mathcal{R}_{1,2} - \alpha \beta^{3} \mathcal{R}_{2,3} + \alpha^{3} \beta \mathcal{R}_{1,3}). \end{aligned}$$

Parameter Estimation (continued)

1 Linearity of E's attack operator U implies:

$$U |a\rangle = |0\rangle (\alpha |e_0\rangle + \beta |e_2\rangle) + |1\rangle (\alpha |e_1\rangle + \beta |e_3\rangle)$$

$$= |a\rangle (\alpha^2 |e_0\rangle + \alpha\beta |e_2\rangle + \alpha\beta |e_1\rangle + \beta^2 |e_3\rangle)$$

$$+ |\bar{a}\rangle (\beta\alpha |e_0\rangle + \beta^2 |e_2\rangle - \alpha^2 |e_1\rangle - \alpha\beta |e_3\rangle).$$

Let $\mathcal{R}_{i,j} = Re \langle e_i | e_j \rangle$. Then:

$$\begin{split} 1 - \textit{p}_{\textit{a},\textit{a}} &= \textit{Q}_{\mathcal{A}} = \alpha^{2}\beta^{2}(\textit{N}_{0} + \textit{N}_{3}) + \beta^{4}\textit{N}_{2} + \alpha^{4}\textit{N}_{1} \\ &+ 2(\beta^{3}\alpha\mathcal{R}_{0,2} - \beta\alpha^{3}\mathcal{R}_{0,1} - \alpha^{2}\beta^{2}\boxed{\mathcal{R}_{0,3}} \\ &- \alpha^{2}\beta^{2}\boxed{\mathcal{R}_{1,2}} - \alpha\beta^{3}\mathcal{R}_{2,3} + \alpha^{3}\beta\mathcal{R}_{1,3}). \end{split}$$

Mismatched Measurement Outcomes

- We may determine $\mathcal{R}_{0,1}, \mathcal{R}_{2,3}, \mathcal{R}_{0,2}, \mathcal{R}_{1,3}$ using mismatched measurement outcomes.
- **②** Consider $p_{0,a}$ normally discarded due to inconsistent basis choice. But:

$$U |0\rangle = |0, e_0\rangle + |1, e_1\rangle = |a\rangle (\alpha |e_0\rangle + \beta |e_1\rangle) + |\bar{a}\rangle (\beta e_0 - \alpha |e_1\rangle),$$

and so:

$$p_{0,a} = \alpha^2 \langle e_0 | e_0 \rangle + \beta^2 \langle e_1 | e_1 \rangle + 2\alpha\beta \mathcal{R}_{0,1}$$
$$\Rightarrow \mathcal{R}_{0,1} = \frac{p_{0,a} - \alpha^2 \mathcal{N}_0 - \beta^2 \mathcal{N}_1}{2\alpha\beta}.$$

Mismatched Measurement Outcomes

Similarly, A and B may estimate:

$$\begin{split} \mathcal{R}_{0,1} &= \frac{p_{0,a} - \alpha^2 N_0 - \beta^2 N_1}{2\alpha\beta} \\ \mathcal{R}_{2,3} &= \frac{p_{1,a} - \alpha^2 N_2 - \beta^2 N_3}{2\alpha\beta} \\ \mathcal{R}_{0,2} &= \frac{p_{a,0} - \alpha^2 N_0 - \beta^2 N_2}{2\alpha\beta} \\ \mathcal{R}_{1,3} &= -\mathcal{R}_{0,2} \\ |\mathcal{R}_{1,2}| &\leq \sqrt{N_1 N_2} \end{split}$$

Key Rate Bound

- **1** Thus, mismatched measurements are used to determine $\mathcal{R}_{0,1}, \mathcal{R}_{2,3}, \mathcal{R}_{0,2}$, and $\mathcal{R}_{1,3}$.
- ② From this, we optimize over all $|\mathcal{R}_{1,2}| \leq \sqrt{N_1 N_2}$ and use the expression for $Q_{\mathcal{A}}$ to determine an estimate of $\mathcal{R}_{0,3}$
- **3** This gives us a lower-bound on S(A|E).

$$\begin{split} 1 - p_{a,a} &= Q_{\mathcal{A}} = \alpha^2 \beta^2 (N_0 + N_3) + \beta^4 N_2 + \alpha^4 N_1 \\ &+ 2 (\beta^3 \alpha \mathcal{R}_{0,2} - \beta \alpha^3 \mathcal{R}_{0,1} - \alpha^2 \beta^2 \mathcal{R}_{0,3} \\ &- \alpha^2 \beta^2 \mathcal{R}_{1,2} - \alpha \beta^3 \mathcal{R}_{2,3} + \alpha^3 \beta \mathcal{R}_{1,3}). \end{split}$$

Key Rate Bound (continued)

- Computing H(A|B) is easy given observed statistics $p_{i,j}$ for $i,j \in \{0,1\}$
- We thus computed a lower-bound on the key-rate of this protocol as a function of multiple channel statistics
- 3 Since we have permutation invarience, this rate holds against general attacks in the asymptotic scenario [10]

Evaluation

Evaluation

• To evaluate our bound, we will consider a symmetric channel; i.e., E's attack may be modeled as a depolarization channel:

$$\mathcal{E}_Q(\rho) = (1 - 2Q)\rho + QI$$

② In this case, we have:

$$p_{0,1} = p_{1,0} = Q = N_1 = N_2$$

 $p_{1,1} = p_{0,0} = 1 - Q = N_0 = N_3$

From which our key rate bound simplifies to:

$$r \ge \underbrace{(1-Q)[1-h(\lambda_C)] + Q[1-h(\lambda_W)]}_{S(A|E) \text{ from Lemma}} - \underbrace{h(Q)}_{H(A|B)}$$

where:

$$\lambda_C = \frac{1}{2} + \frac{|\mathcal{R}_{0,3}|}{2(1-Q)}$$
 $\lambda_W = \frac{1}{2} + \frac{|\mathcal{R}_{1,2}|}{2Q}$

1 If A sends $|0\rangle$, the qubit arriving at B's lab is:

$$\mathcal{E}_{Q}(\left|0\right\rangle \left\langle 0\right|)=\left(1-Q\right)\left|0\right\rangle \left\langle 0\right|+\left.Q\left|1\right\rangle \left\langle 1\right|,$$

From which we have:

$$p_{0,a} = (1 - Q)\alpha^2 + Q\beta^2$$

(Note if
$$\alpha = 1/\sqrt{2}$$
, then $p_{0,a} = 1/2$.)

Trivial algebra shows:

$$\mathcal{R}_{0,1} = \frac{p_{0,a} - \alpha^2 N_0 - \beta^2 N_1}{2\alpha\beta} = 0$$

Similar algebra shows:

$$\mathcal{R}_{0,1} = \frac{p_{0,a} - \alpha^2 N_0 - \beta^2 N_1}{2\alpha\beta} = 0$$

$$\mathcal{R}_{2,3} = \frac{p_{1,a} - \alpha^2 N_2 - \beta^2 N_3}{2\alpha\beta} = 0$$

$$\mathcal{R}_{0,2} = \frac{p_{a,0} - \alpha^2 N_0 - \beta^2 N_2}{2\alpha\beta} = 0$$

$$\mathcal{R}_{1,3} = -\mathcal{R}_{0,2} = 0$$

$$|\mathcal{R}_{1,2}| \le \sqrt{N_1 N_2} = Q$$

1 Using this, we may conclude:

$$1 - p_{a,a} = Q_{\mathcal{A}} = \alpha^{2} \beta^{2} (N_{0} + N_{3}) + \beta^{4} N_{2} + \alpha^{4} N_{1}$$

$$+ 2(\beta^{3} \alpha \mathcal{R}_{0,2} - \beta \alpha^{3} \mathcal{R}_{0,1} - \alpha^{2} \beta^{2} \mathcal{R}_{0,3}$$

$$- \alpha^{2} \beta^{2} \mathcal{R}_{1,2} - \alpha \beta^{3} \mathcal{R}_{2,3} + \alpha^{3} \beta \mathcal{R}_{1,3})$$

$$\Rightarrow \mathcal{R}_{0,3} = 1 - 2Q + \frac{Q - Q_{\mathcal{A}}}{2\alpha^{2} \beta^{2}} - \mathcal{R}_{1,2}$$

• Using this, we may conclude:

$$1 - p_{a,a} = Q_{\mathcal{A}} = \alpha^{2} \beta^{2} (N_{0} + N_{3}) + \beta^{4} N_{2} + \alpha^{4} N_{1}$$

$$+ 2(\beta^{3} \alpha \mathcal{R}_{0,2} - \beta \alpha^{3} \mathcal{R}_{0,1} - \alpha^{2} \beta^{2} \mathcal{R}_{0,3}$$

$$- \alpha^{2} \beta^{2} \mathcal{R}_{1,2} - \alpha \beta^{3} \mathcal{R}_{2,3} + \alpha^{3} \beta \mathcal{R}_{1,3})$$

$$\Rightarrow \mathcal{R}_{0,3} = 1 - 2Q + \frac{Q - Q_{\mathcal{A}}}{2\alpha^{2} \beta^{2}} - \mathcal{R}_{1,2}$$

$$= 1 - 2Q - \mathcal{R}_{1,2}$$

- **1** Thus, to compute the key-rate, one must optimize over $\mathcal{R}_{1,2} \in [-Q,Q]$.
- Note also that this depolarization channel example is entirely enforceable.

Figure: Comparing our new key rate bound (for any $\alpha \in (0,1)$) with the one from [2] (which did not use mismatched measurement outcomes).

- This shows the three-state protocol is as secure as the four-state BB84, providing an alternative proof to the one in [7]
- 2 However, our key-rate expression is very general and works in asymmetric channels...

Evaluation: Asymmetric Channel

key-rate	.628	.093	.008	.136	.059
$p_{0,1}$.075	.157	.081	.159	.262
$p_{1,0}$.009	.135	.265	.045	.050
$p_{a,ar{a}}$.024	.057	.081	.120	.098
$p_{0,a}$.581	.321	.320	.403	.611
$p_{1,a}$.419	.675	.659	.526	.343
$p_{a,0}$.389	.649	.732	.429	.261

Table: Evaluating our key-rate bound on some randomly generated asymmetric channels.

Recent and Future Work

Recent and Future Work

• Adding a fourth state $|b\rangle=\beta\,|0\rangle+i\sqrt{1-\beta^2}\,|1\rangle$ to the parameter estimation process allows A and B to estimate $\mathcal{R}_{1,2}$ and $\mathcal{R}_{0,3}$ directly:

$$\mathcal{R}_{0,3} = 1 - \textit{p}_{\text{a},\bar{\text{a}}} - \textit{p}_{b,\bar{\text{b}}} - \frac{1}{2} (\underbrace{\phantom{\text{mismatched measurement outcomes}}^{\text{mismatched measurement outcomes}}_{\mathcal{R}_{0,1} + \mathcal{I}_{0,1} + \mathcal{R}_{2,3} + \mathcal{I}_{2,3}}).$$

$$\mathcal{R}_{1,2} = p_{b,ar{b}} - p_{a,ar{a}} + rac{1}{2} (\underbrace{\mathcal{I}_{0,1} - \mathcal{R}_{0,1} + \mathcal{I}_{2,3} - \mathcal{R}_{2,3}}_{ ext{mismatched measurement outcomes}})$$

② By adding this extra state (and measuring in the $\mathcal{B} = \{|b\rangle, |\bar{b}\rangle\}$ basis), this four-state BB84 can tolerate the same level of noise as the full six-state BB84.

Recent and Future Work

 Our method also extends easily to other QKD protocols, both one-way and two-way protocols

New Work: Extended B92

- We considered the Extended B92 protocol [11]
- ② Here, Alice encodes a 0 and 1 with a $|0\rangle$ and $|a\rangle$ respectively
- Other states are used for parameter estimation

α	0	0.342	0.643	0.939	0.985
Old Bound From [11]	11%	9.3%	5.7%	1%	0.27%
New Bound Using Ψ_3					
New Bound using Ψ_4	12.6%	11.9%	10.2%	5.31%	2.85%

$$\Psi_{3} = \left\{ \left| 0 \right\rangle, \left| 1 \right\rangle, \left| a \right\rangle \right\} \qquad \qquad \Psi_{4} = \left\{ \left| 0 \right\rangle, \left| 1 \right\rangle, \left| a \right\rangle, \left| b \right\rangle \right\}$$

Optimized QKD

- Alice and Bob use mismatched measurement outcomes to establish $\mathcal{R}_{i,i}$ as discussed.
- 2 They then choose optimal states to prepare and measure in.
- **3** I.e., Alice sends $|\psi_0\rangle = \alpha_s |0\rangle + \sqrt{1 \alpha_s^2} |1\rangle$ to encode a 0 and $|\psi_1\rangle = \beta_s |0\rangle + \sqrt{1 \beta_s^2} |1\rangle$ to encode a 1.
- ① If Bob measures $|\phi_0\rangle = \alpha_r |0\rangle + \sqrt{1 \alpha_r^2} |1\rangle$ or $|\phi_1\rangle = \beta_r |0\rangle + \sqrt{1 \beta_r^2} |1\rangle$ his key bit is 0 or 1 respectively.

Optimized QKD

Ψ_4- BB84's key-rate	.349	0.001	0	.265
Optimized key-rate	.349	0.001	.038	.307
Optimized (α_s, β_s)	(1,0)	(1,0)	(-1, .23)	(.23, -1)
Optimized (α_r, β_r)	(1,0)	(1,0)	(94, .02)	(97,01)
<i>P</i> 0,1	.07	.126	.138	.079
$ ho_{1,0}$.07	.126	.191	.120
$p_{a,ar{a}}$.07	.126	.091	.034
$ ho_{b,ar{b}}$.07	.126	.058	.063
$p_{0,a}$.5	.5	.523	.526
$p_{1,a}$.5	.5	.623	.544
$p_{a,0}$.5	.5	.566	.523
$p_{0,b}$.5	.5	.435	.334
$p_{1,b}$.5	.5	.505	.623
$p_{b.0}$.5	.5	.419	.396

New Work: Semi-Quantum Protocol

- We also considered the *semi-quantum* protocol of Boyer et al. [12] which uses a two-way quantum channel: $A \rightarrow B \rightarrow A$.
- ② B can only measure in the $Z = \{|0\rangle, |1\rangle\}$ basis.
- Our method provided a superior key-rate bound to prior work in [13]

Figure: Boyer et al.'s SQKD Protocol [12]

SQKD - Evaluation

	Independent	Correlated
Old Bound From [13]	4.57%	5.34%
New Bound Using 2 Bases	5.4%	7.4%
	3.4/0	1.4/0
New Bound Using 3 Bases	6.7%	8.76%

Figure: Boyer et al.'s SQKD Protocol [12]

Other Future Work

- Consider imprecise parameter estimation more rigorously
- We only worked in the asymptotic scenario, a finite-key analysis would be useful
- Try to adapt this technique to other two-way protocols; also our work with the semi-quantum protocol can be improved

Thank you! Questions?

References I

Chi-Hang Fred Fung and Hoi-Kwong Lo.

Security proof of a three-state quantum-key-distribution protocol without rotational symmetry.

Phys. Rev. A, 74:042342, Oct 2006.

Cyril Branciard, Nicolas Gisin, Norbert Lutkenhaus, and Valerio Scarani. Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography.

Quantum Information & Computation, 7(7):639–664, 2007.

Charles H Bennett and Gilles Brassard.

Quantum cryptography: Public key distribution and coin tossing.

In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175. New York, 1984.

Stephen M Barnett, Bruno Huttner, and Simon JD Phoenix.

Eavesdropping strategies and rejected-data protocols in quantum cryptography. *Journal of Modern Optics*, 40(12):2501–2513, 1993.

Shun Watanabe, Ryutaroh Matsumoto, and Tomohiko Uyematsu.

Tomography increases key rates of quantum-key-distribution protocols.

Physical Review A, 78(4):042316, 2008.

References II

Zhen-Qiang Yin, Chi-Hang Fred Fung, Xiongfeng Ma, Chun-Mei Zhang, Hong-Wei Li, Wei Chen, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han. Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources.

Physical Review A, 90(5):052319, 2014.

Kiyoshi Tamaki, Marcos Curty, Go Kato, Hoi-Kwong Lo, and Koji Azuma. Loss-tolerant quantum cryptography with imperfect sources. *Physical Review A*, 90(5):052314, 2014.

Renato Renner, Nicolas Gisin, and Barbara Kraus. Information-theoretic security proof for quantum-key-distribution protocols. *Phys. Rev. A*, 72:012332, Jul 2005.

Igor Devetak and Andreas Winter.

Distillation of secret key and entanglement from quantum states.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 461(2053):207–235, 2005.

Matthias Christandl, Robert Konig, and Renato Renner.

Postselection technique for quantum channels with applications to quantum cryptography.

Phys. Rev. Lett., 102:020504, Jan 2009.

References III

Marco Lucamarini, Giovanni Di Giuseppe, and Kiyoshi Tamaki.

Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states.

Physical Review A, 80(3):032327, 2009.

Michel Boyer, D. Kenigsberg, and T. Mor.

Quantum key distribution with classical bob.

In Quantum, Nano, and Micro Technologies, 2007. ICQNM '07. First International Conference on, pages 10–10, 2007.

Walter O Krawec.

Security proof of a semi-quantum key distribution protocol.

In Information Theory (ISIT), 2015 IEEE International Symposium on, pages 686–690. IEEE, 2015.