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Quantum Key Distribution (QKD)
1 Allows two users - Alice (A) and Bob (B) - to establish a

shared secret key
2 Secure against an all powerful adversary

Does not require any computational assumptions
Attacker bounded only by the laws of physics
Something that is not possible using classical means only

3 Accomplished using a quantum communication channel

Figure: Typical QKD Setup



Three-State BB84

1 In this work, we consider a three-state variant of the BB84
protocol first introduced in [1, 2]

2 We consider a generalized version of the protocol.
3 The quantum communication stage is as follows:

A chooses to send a state |0〉, |1〉, or |a〉 = α |0〉+
√

1− α2 |1〉,
for α ∈ (0, 1), with probability p/2, p/2, and 1− p respectively.
B chooses to measure in the Z = {|0〉 , |1〉} basis or the
A = {|a〉 , |ā〉} basis.

4 Notes:
1 When α = 1/

√
2 (thus |a〉 = |+〉 and |ā〉 = |−〉) this is exactly

the three-state protocol considered in [1, 2]
2 To improve efficiency, A and B may choose p close to one.
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Mismatched Measurement Outcomes

1 Note that parties cannot measure the probability of E ’s attack
flipping a |ā〉 to a |a〉 (unlike the “full” four-state BB84
protocol [3])

2 However, we will use mismatched measurement outcomes to
overcome this limitation

3 Let pi ,j , for i , j ∈ {0, 1, a} be the probability that, if A sends
|i〉 then B measures |j〉 (after E ’s attack).

4 We will utilize all statistics including those of the form
p0,a, p1,a, and pa,j to derive our key-rate expression

I.e., we will not discard measurement results when A and B
choose different bases.

5 Doing so allows us to prove that the three-state BB84 has the
same maximally tolerated error rate as the full four-state
BB84 (i.e., 11%).



Related Work

We are not the first to show mismatched measurement results are
useful:

1 In 1993, Barnett et al., [4] used them to detect an attacker
with greater probability for measure-and-resend attacks

2 In [5] (2008) they were shown to produce superior key-rates
for the four-state and six-state BB84 for certain quantum
channels

3 They have been used in the analysis of certain device
independent protocols [6].



Related Work (continued)

In [7] mismatched measurement results were used to analyze the
generalized three-state BB84 protocol we consider in our paper,
however:

1 We derive an alternative approach which can also be applied
to several other protocols (as we comment on later). Thus,
we also provide an alternative proof of the result in [7] that
this three-state protocol can withstand up to 11% error if a
symmetric attack is used.

2 Furthermore, in our work we derive a key-rate expression for
any arbitrary quantum channel, parameterized by all statistics
pi ,j (only symmetric attacks were considered in [7]).



Key Rate Bound



QKD Security

1 After the quantum communication stage and parameter
estimation, A and B hold an N-bit raw key

2 They then run an error correcting protocol and privacy
amplification protocol

3 Result is an `(N)-bit secret key

4 We compute a lower-bound on the key-rate of this three-state
protocol in the asymptotic scenario:

r = lim
N→∞

`(N)

N

5 We first consider collective attacks and so by [8, 9]:

r = inf S(A|E )− H(A|B).



Collective Attack

1 Without loss of generality, we may model E ’s collective attack
as a unitary U, acting on the qubit and E ’s private memory.

2 Furthermore, we may assume E ’s memory is cleared to some
pure “zero” state.

3 Thus:

U |0, 0〉 = |0, e0〉+ |1, e1〉
U |1, 0〉 = |0, e2〉+ |1, e3〉



Joint Quantum State

1 To compute r = inf S(A|E )− H(A|B), we need to model the
joint-quantum state, held by A, B, and E , conditioning on the
event A and B use this iteration for their raw key. I.e.,:

A sends either |0〉 or |1〉 and B measures in the Z = {|0〉 , |1〉}
basis.

2 This state is easily computed:

ρABE =
1

2
( |00〉 〈00|AB ⊗ |e0〉 〈e0|+ |11〉 〈11|AB ⊗ |e3〉 〈e3|

+ |01〉 〈01|AB ⊗ |e1〉 〈e1|+ |10〉 〈10|AB ⊗ |e2〉 〈e2|).

⇒ ρAE =
1

2
( |0〉 〈0|A ⊗ [|e0〉 〈e0|+ |e1〉 〈e1|]

+ |1〉 〈1|A ⊗ [|e2〉 〈e2|+ |e3〉 〈e3|]).
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Computing S(A|E )

Lemma

Given a density operator:

ρAE =
1

N
( |0〉 〈0|A ⊗ (|e0〉 〈e0|E + |e1〉 〈e1|E )

+ |1〉 〈1|A ⊗ (|e2〉 〈e2|E + |e3〉 〈e3|E )),

then:

S(A|E ) ≥ N0 + N3

N

[
h

(
N0

N0 + N3

)
− h(λ0,3)

]
+

N1 + N2

N

[
h

(
N1

N1 + N2

)
− h(λ1,2)

]
,

where Ni = 〈ei |ei 〉 and:

λi ,j =
1

2
+

√
(Ni − Nj)2 + 4Re2 〈ei |ej〉

2(Ni + Nj)
.



Parameter Estimation

U : |0〉 7→ |0, e0〉+ |1, e1〉 |1〉 7→ |0, e2〉+ |1, e3〉

1 Clearly, we may measure Ni = 〈ei |ei 〉
2 We therefore need only Re 〈e0|e3〉 and Re 〈e1|e2〉 (for λ0,3 and
λ1,2)



Parameter Estimation (continued)

1 Linearity of E ’s attack operator U implies:

U |a〉 = |0〉 (α |e0〉+ β |e2〉) + |1〉 (α |e1〉+ β |e3〉)

= |a〉 (α2 |e0〉+ αβ |e2〉+ αβ |e1〉+ β2 |e3〉)
+ |ā〉 (βα |e0〉+ β2 |e2〉 − α2 |e1〉 − αβ |e3〉).

Let Ri ,j = Re 〈ei |ej〉. Then:

1− pa,a = QA = α2β2(N0 + N3) + β4N2 + α4N1

+ 2(β3αR0,2 − βα3R0,1 − α2β2R0,3

− α2β2R1,2 − αβ3R2,3 + α3βR1,3).
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Mismatched Measurement Outcomes

1 We may determine R0,1,R2,3,R0,2,R1,3 using mismatched
measurement outcomes.

2 Consider p0,a - normally discarded due to inconsistent basis
choice. But:

U |0〉 = |0, e0〉+ |1, e1〉
= |a〉 (α |e0〉+ β |e1〉) + |ā〉 (βe0 − α |e1〉),

and so:

p0,a = α2 〈e0|e0〉+ β2 〈e1|e1〉+ 2αβR0,1

⇒R0,1 =
p0,a − α2N0 − β2N1

2αβ
.



Mismatched Measurement Outcomes

Similarly, A and B may estimate:

R0,1 =
p0,a − α2N0 − β2N1

2αβ

R2,3 =
p1,a − α2N2 − β2N3

2αβ

R0,2 =
pa,0 − α2N0 − β2N2

2αβ

R1,3 = −R0,2

|R1,2| ≤
√

N1N2



Key Rate Bound

1 Thus, mismatched measurements are used to determine
R0,1,R2,3,R0,2, and R1,3.

2 From this, we optimize over all |R1,2| ≤
√

N1N2 and use the
expression for QA to determine an estimate of R0,3

3 This gives us a lower-bound on S(A|E ).

1− pa,a = QA = α2β2(N0 + N3) + β4N2 + α4N1

+ 2(β3αR0,2 − βα3R0,1 − α2β2R0,3

− α2β2R1,2 − αβ3R2,3 + α3βR1,3).



Key Rate Bound (continued)

1 Computing H(A|B) is easy given observed statistics pi ,j for
i , j ∈ {0, 1}

2 We thus computed a lower-bound on the key-rate of this
protocol as a function of multiple channel statistics

3 Since we have permutation invarience, this rate holds against
general attacks in the asymptotic scenario [10]



Evaluation



Evaluation
1 To evaluate our bound, we will consider a symmetric channel;

i.e., E ’s attack may be modeled as a depolarization channel:

EQ(ρ) = (1− 2Q)ρ+ QI

2 In this case, we have:

p0,1 = p1,0 = Q = N1 = N2

p1,1 = p0,0 = 1− Q = N0 = N3

From which our key rate bound simplifies to:

r ≥ (1− Q)[1− h(λC )] + Q[1− h(λW )]︸ ︷︷ ︸
S(A|E) from Lemma

− h(Q)︸ ︷︷ ︸
H(A|B)

where:

λC =
1

2
+
|R0,3|

2(1− Q)
λW =

1

2
+
|R1,2|

2Q



Evaluation (continued)

1 If A sends |0〉, the qubit arriving at B’s lab is:

EQ(|0〉 〈0|) = (1− Q) |0〉 〈0|+ Q |1〉 〈1| ,

From which we have:

p0,a = (1− Q)α2 + Qβ2

(Note if α = 1/
√

2, then p0,a = 1/2.)

2 Trivial algebra shows:

R0,1 =
p0,a − α2N0 − β2N1

2αβ
= 0



Evaluation (continued)

1 Similar algebra shows:

R0,1 =
p0,a − α2N0 − β2N1

2αβ
= 0

R2,3 =
p1,a − α2N2 − β2N3

2αβ
= 0

R0,2 =
pa,0 − α2N0 − β2N2

2αβ
= 0

R1,3 = −R0,2 = 0

|R1,2| ≤
√

N1N2 = Q



Evaluation (continued)

1 Using this, we may conclude:

1− pa,a = QA = α2β2(N0 + N3) + β4N2 + α4N1

+ 2(β3αR0,2 − βα3R0,1 − α2β2R0,3

− α2β2R1,2 − αβ3R2,3 + α3βR1,3)

⇒ R0,3 = 1− 2Q +
Q − QA
2α2β2

−R1,2



Evaluation (continued)

1 Using this, we may conclude:

1− pa,a = QA = α2β2(N0 + N3) + β4N2 + α4N1

+ 2(β3αR0,2 − βα3R0,1 − α2β2R0,3

− α2β2R1,2 − αβ3R2,3 + α3βR1,3)

⇒ R0,3 = 1− 2Q +
Q − QA
2α2β2

−R1,2

= 1− 2Q −R1,2



Evaluation (continued)

1 Thus, to compute the key-rate, one must optimize over
R1,2 ∈ [−Q,Q].

2 Note also that this depolarization channel example is entirely
enforceable.

Figure: Comparing our new key rate bound (for any α ∈ (0, 1)) with the
one from [2] (which did not use mismatched measurement outcomes).



Evaluation (continued)

1 This shows the three-state protocol is as secure as the
four-state BB84, providing an alternative proof to the one in
[7]

2 However, our key-rate expression is very general and works in
asymmetric channels...



Evaluation: Asymmetric Channel

key-rate .628 .093 .008 .136 .059

p0,1 .075 .157 .081 .159 .262
p1,0 .009 .135 .265 .045 .050
pa,ā .024 .057 .081 .120 .098

p0,a .581 .321 .320 .403 .611
p1,a .419 .675 .659 .526 .343
pa,0 .389 .649 .732 .429 .261

Table: Evaluating our key-rate bound on some randomly generated
asymmetric channels.



Recent and Future Work



Recent and Future Work

1 Adding a fourth state |b〉 = β |0〉+ i
√

1− β2 |1〉 to the
parameter estimation process allows A and B to estimate R1,2

and R0,3 directly:

R0,3 = 1− pa,ā − pb,b̄ −
1

2
(

mismatched measurement outcomes︷ ︸︸ ︷
R0,1 + I0,1 +R2,3 + I2,3 ).

R1,2 = pb,b̄ − pa,ā +
1

2
( I0,1 −R0,1 + I2,3 −R2,3︸ ︷︷ ︸

mismatched measurement outcomes

)

2 By adding this extra state (and measuring in the
B = {|b〉 , |b̄〉} basis), this four-state BB84 can tolerate the
same level of noise as the full six-state BB84.



Recent and Future Work

1 Our method also extends easily to other QKD protocols, both
one-way and two-way protocols



New Work: Extended B92

1 We considered the Extended B92 protocol [11]

2 Here, Alice encodes a 0 and 1 with a |0〉 and |a〉 respectively

3 Other states are used for parameter estimation

α 0 0.342 0.643 0.939 0.985
Old Bound From [11] 11% 9.3% 5.7% 1% 0.27%
New Bound Using Ψ3 11% 9.97% 7.8% 3.8% 2.05%
New Bound using Ψ4 12.6% 11.9% 10.2% 5.31% 2.85%

Ψ3 = {|0〉 , |1〉 , |a〉} Ψ4 = {|0〉 , |1〉 , |a〉 , |b〉}



Optimized QKD

1 Alice and Bob use mismatched measurement outcomes to
establish Ri ,j as discussed.

2 They then choose optimal states to prepare and measure in.

3 I.e., Alice sends |ψ0〉 = αs |0〉+
√

1− α2
s |1〉 to encode a 0

and |ψ1〉 = βs |0〉+
√

1− β2
s |1〉 to encode a 1.

4 If Bob measures |φ0〉 = αr |0〉+
√

1− α2
r |1〉 or

|φ1〉 = βr |0〉+
√

1− β2
r |1〉 his key bit is 0 or 1 respectively.



Optimized QKD

Ψ4 − BB84’s key-rate .349 0.001 0 .265

Optimized key-rate .349 0.001 .038 .307
Optimized (αs , βs) (1, 0) (1, 0) (−1, .23) (.23,−1)
Optimized (αr , βr ) (1, 0) (1, 0) (−.94, .02) (−.97,−.01)

p0,1 .07 .126 .138 .079
p1,0 .07 .126 .191 .120
pa,ā .07 .126 .091 .034
pb,b̄ .07 .126 .058 .063

p0,a .5 .5 .523 .526
p1,a .5 .5 .623 .544
pa,0 .5 .5 .566 .523
p0,b .5 .5 .435 .334
p1,b .5 .5 .505 .623
pb,0 .5 .5 .419 .396



New Work: Semi-Quantum Protocol

1 We also considered the semi-quantum protocol of Boyer et al.
[12] which uses a two-way quantum channel: A→ B → A.

2 B can only measure in the Z = {|0〉 , |1〉} basis.

3 Our method provided a superior key-rate bound to prior work
in [13]

Figure: Boyer et al.’s SQKD Protocol [12]



SQKD - Evaluation

Independent Correlated
Old Bound From [13] 4.57% 5.34%

New Bound Using 2 Bases 5.4% 7.4%
New Bound Using 3 Bases 6.7% 8.76%

Figure: Boyer et al.’s SQKD Protocol [12]



Other Future Work

1 Consider imprecise parameter estimation more rigorously

2 We only worked in the asymptotic scenario, a finite-key
analysis would be useful

3 Try to adapt this technique to other two-way protocols; also
our work with the semi-quantum protocol can be improved



Thank you! Questions?
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