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Quantum Key Distribution (QKD)

© Allows two users - Alice (A) and Bob (B) - to establish a
shared secret key
@ Secure against an all powerful adversary
o Does not require any computational assumptions
o Attacker bounded only by the laws of physics
e Something that is not possible using classical means only
© Accomplished using a quantum communication channel
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Figure: Typical QKD Setup



Three-State BB84

@ In this work, we consider a three-state variant of the BB84
protocol first introduced in [1, 2]
© We consider a generalized version of the protocol.
© The quantum communication stage is as follows:
o A chooses to send a state |0), |1), or |a) = «|0) + V1 — a?|1),
for « € (0,1), with probability p/2, p/2, and 1 — p respectively.
e B chooses to measure in the Z = {|0),|1)} basis or the

A=/{|a),|3)} basis.



Three-State BB84

© In this work, we consider a three-state variant of the BB84
protocol first introduced in [1, 2]

© We consider a generalized version of the protocol.
© The quantum communication stage is as follows:
o A chooses to send a state |0), |1), or |a) = «|0) + V1 — a?|1),
for « € (0,1), with probability p/2, p/2, and 1 — p respectively.
e B chooses to measure in the Z = {|0),|1)} basis or the
A={]a),|3)} basis.
QO Notes:
O When a = 1/v/2 (thus |a) = |+) and |3) = |—)) this is exactly
the three-state protocol considered in [1, 2]
@ To improve efficiency, A and B may choose p close to one.



Mismatched Measurement Qutcomes

© Note that parties cannot measure the probability of E's attack
flipping a |3) to a |a) (unlike the “full” four-state BB84
protocol [3])

@ However, we will use mismatched measurement outcomes to
overcome this limitation

© Let p;j, for i,j € {0,1,a} be the probability that, if A sends
|i) then B measures |j) (after E's attack).

© We will utilize all statistics including those of the form
Po,a; P1,a, and p,; to derive our key-rate expression

o l.e., we will not discard measurement results when A and B
choose different bases.

© Doing so allows us to prove that the three-state BB84 has the
same maximally tolerated error rate as the full four-state
BB84 (i.e., 11%).



Related Work

We are not the first to show mismatched measurement results are
useful:
© In 1993, Barnett et al., [4] used them to detect an attacker
with greater probability for measure-and-resend attacks
@ In [5] (2008) they were shown to produce superior key-rates
for the four-state and six-state BB84 for certain quantum
channels

© They have been used in the analysis of certain device
independent protocols [6].



Related Work (continued)

In [7] mismatched measurement results were used to analyze the
generalized three-state BB84 protocol we consider in our paper,
however:

© We derive an alternative approach which can also be applied
to several other protocols (as we comment on later). Thus,
we also provide an alternative proof of the result in [7] that
this three-state protocol can withstand up to 11% error if a
symmetric attack is used.

@ Furthermore, in our work we derive a key-rate expression for
any arbitrary quantum channel, parameterized by all statistics
pij (only symmetric attacks were considered in [7]).



Key Rate Bound



QKD Security

©Q After the quantum communication stage and parameter
estimation, A and B hold an N-bit raw key

© They then run an error correcting protocol and privacy
amplification protocol

© Result is an ¢(N)-bit secret key

Q We compute a lower-bound on the key-rate of this three-state
protocol in the asymptotic scenario:

e UN)
r=gm =N

© We first consider collective attacks and so by [8, 9]:

r =inf S(A|E) — H(A|B).



Collective Attack

© Without loss of generality, we may model E's collective attack
as a unitary U, acting on the qubit and E’s private memory.

© Furthermore, we may assume E's memory is cleared to some
pure “zero” state.

© Thus:

U10,0) = |0,e) + |1, €1)
u |170> = |0)e2> + |17 e3>



Joint Quantum State

© To compute r = inf S(A|E) — H(A|B), we need to model the
joint-quantum state, held by A, B, and E, conditioning on the
event A and B use this iteration for their raw key. l.e.,:
o A sends either |0) or |1) and B measures in the Z = {|0),|1)}
basis.



Joint Quantum State

© To compute r = inf S(A|E) — H(A|B), we need to model the
joint-quantum state, held by A, B, and E, conditioning on the
event A and B use this iteration for their raw key. l.e.,:

o A sends either |0) or |1) and B measures in the Z = {|0),|1)}
basis.

© This state is easily computed:

pase = 5(100} (00]4g @ leo) {eo] + 1) (1] ®e3) (|
+101) (01] 15 @ ler) er] +[10) (10]5 ® ) (e

= pag = 510} (0142 [1) (el +]ex) (]
L) (114 @ (1) ezl + les) esl).



Computing S(A|E)

Given a density operator:

pae = 1 (10) (01 @ (leo) (el + ler) ()
+11) (1], @ (lex) (erlg +1e3) {esl )

then:

S(AIE) > e ; e [h (NOIYkON3> - h(>\0,3)}

Ny + No Ny
h — h(\
aF N |: <N1 T N2> ( 1,2):| )

where N; = (ej|e;) and:

L. v/ (Ni = N;)? + 4Re? (eile))
2 2(N; + N;) '




Parameter Estimation

U:10) — 0, &) + (1, e1) 1) — 10, &2) + |1, e3)

© Clearly, we may measure N; = (ei|e;)

@ We therefore need only Re (egles) and Re (e1|e2) (for Ao 3 and
A12)



Parameter Estimation (continued)

© Linearity of E's attack operator U implies:

Ula) = [0) («feo) + Ble2)) + [1) (efer) + es))

= |a) (a® |eo) + a3 |e2) + a3 |er) + 3% [e3))
+13) (Barleo) + 52 |e2) — a® |er) — af |e3)).

Let Rij = Re(eilej). Then:

1— pas=Qu =08 (No+ N3)+ B*Na + a*Ny
+2(3%aRo2 — BaRo1 — a?B*Ro 3
— ®?FPRip — afPRoz + a®BR13).



Parameter Estimation (continued)

© Linearity of E's attack operator U implies:

Ula) = 0) (afeo) + Ble2)) + [1) (afer) + [ es))

= |a) (a® |eo) + a3 |e2) + a3 |er) + 3% [e3))
+13) (Ba|eo) + 3% |e2) — a® [er) — af3 |es).

Let Rij = Re(eilej). Then:

1— paa= Qu=0a?B(No+ N3)+ B*No + o Ny
+ 2(ﬁ3047_\’,0’2 — ﬁa?"Ro,l — a2ﬁ2
- 04252 — afPRaz + a’BR3).



Mismatched Measurement Qutcomes

© We may determine Rq 1, R23,Ro2, R1,3 using mismatched
measurement outcomes.

@ Consider pp 5 - normally discarded due to inconsistent basis
choice. But:

U[0) =10,e0) +[1,e1)
= |a) (a|eo) + B er)) + [3) (Beo — ax[er)),
and so:
Po.o = o (eg|eo) + 32 (e1]er) + 2a8Ro 1

po.a — a?Nog — %Ny
203

=>R071 =



Mismatched Measurement Qutcomes

Similarly, A and B may estimate:

po.a — a?No — %Ny

R —
0.1 2a3

R PLa™ a?Np — 32N3
23 2a3

R, _ Pa0~ a?No — 32N>
0,2 20

Ri3=—Rop

|R12| < v/NiNy



Key Rate Bound

© Thus, mismatched measurements are used to determine
Ro,1,R23,Ro,2, and Ry 3.

@ From this, we optimize over all |R12| < +/NiN> and use the
expression for Q4 to determine an estimate of Rg3

© This gives us a lower-bound on S(A|E).

1~ paa= Qa =23 (No+ N3)+ B3*No + a* Ny
+2(32aRo2 — BaRo1 — B Ro3
— a?FPRip — afPRoz + a®BR13).



Key Rate Bound (continued)

@ Computing H(A|B) is easy given observed statistics p; j for
i,j€{0,1}

@ We thus computed a lower-bound on the key-rate of this
protocol as a function of multiple channel statistics

© Since we have permutation invarience, this rate holds against
general attacks in the asymptotic scenario [10]



Evaluation



Evaluation

© To evaluate our bound, we will consider a symmetric channel;
i.e., E's attack may be modeled as a depolarization channel:

Eq(p) =(1-2Q)p+ QI
@ In this case, we have:

po1=pio=Q =N =Ny
pii=poo=1—Q=Ny=Ns

From which our key rate bound simplifies to:

r>(1-Q)[1—hAc)]+ QL —h(Aw)] - h(Q)

——
S(A|E) from Lemma H(A|B)
where:
1 R 1 IR
)\C:*‘f’ ’ 0,3 AW:*—F’ 1’2|

2 2(1-Q) 2 2Q



Evaluation (continued)

© If A sends |0), the qubit arriving at B's lab is:
£q(10) (0) = (1 — @)[0) (O] + Q1) (1],
From which we have:
poa= (1 - Q)+ QpF?
(Note if o = 1/+/2, then py . = 1/2.)
@ Trivial algebra shows:

— a?Ny — 32N
ROIZPo,a a“Np — 5°N;

’ 2a3 =0




Evaluation (continued)

@ Similar algebra shows:

po,a — @?No — 32Ny

Ro1 = =0
0.1 2a3
2 2
p1,a — a“No — 3N3
Rps = Eb =0
23 2a3
2 2
Pao — a“Ng — BNo
Rop = £2 =0
0,2 2a3

Ri3=—-Ro2=0

|Ri2| < V/NilNo = Q



Evaluation (continued)

© Using this, we may conclude:
_ 22 4 4
l_pa,a— QA—Oé ﬂ (N0+N3)+ﬂ N2+CY Nl

+2(3%aRo2 — BaRo1 — a?B*Ro 3
— 2FPRip — afPRoz + a®BR13)

Q- Qa
2012,32

= Roz=1-2Q + —Ri2



Evaluation (continued)

@ Using this, we may conclude:

1-— Paa = Qa = azﬁz(No + N3) + 54N2 + a4N1
+2(BaRo2 — Ba*Ro1 — a?B°Ro 3
— ?f*R12 — afPRoz + @BR13)

Q- Qa

—1-2
= Rogs Q+ T

—Rip

=1-2Q —Ri>



Evaluation (continued)

© Thus, to compute the key-rate, one must optimize over
Ri2 € [-Q, Q]

© Note also that this depolarization channel example is entirely
enforceable.

key rate
1 -

o D New Bound
......... 0ld Bound
0.6
0.4
0.2 S
=
0 Q

0 002 004 006 008 01

Figure: Comparing our new key rate bound (for any a € (0,1)) with the
one from [2] (which did not use mismatched measurement outcomes).



Evaluation (continued)

© This shows the three-state protocol is as secure as the
four-state BB84, providing an alternative proof to the one in
[7]

© However, our key-rate expression is very general and works in
asymmetric channels...



Evaluation: Asymmetric Channel

key-rate | .628 .093 .008 .136 .059

po1 | 075 157 081 159 262
pio | 009 135 265 .045 050
paa | .024 057 081 .120 .098

po,a | 581 321 .320 .403 .611
p1a | 419 675 .659 526 .343
pao | -389 .649 732 429 261

Table: Evaluating our key-rate bound on some randomly generated
asymmetric channels.



Recent and Future Work



Recent and Future Work

@ Adding a fourth state |b) = 3|0) + i\/1 — (32|1) to the
parameter estimation process allows A and B to estimate Rq»
and Ry 3 directly:

mismatched measurement outcomes

1
Roz=1—paz—Ppp— 5( Roi1+Zox+Roz+1o3 ).

1
Ri2 = Ppp — Paa+ 5( Togp —Ro1+7Zo3—Ro3 )

mismatched measurement outcomes

© By adding this extra state (and measuring in the
B ={|b),|b)} basis), this four-state BB84 can tolerate the
same level of noise as the full six-state BB34.



Recent and Future Work

© Our method also extends easily to other QKD protocols, both
one-way and two-way protocols



New Work: Extended B92

© We considered the Extended B92 protocol [11]
@ Here, Alice encodes a 0 and 1 with a |0) and |a) respectively
© Other states are used for parameter estimation

a‘ 0 0.342 0.643 0.939 0.985

Old Bound From [11] | 11% 9.3% 5.7% 1%  0.27%
New Bound Using W3 | 11% 9.97% 7.8% 3.8% 2.05%
New Bound using WV, | 12.6% 11.9% 10.2% 5.31% 2.85%

V3 ={[0), 1), ]a)} Vs ={[0),11),]a),[b)}



Optimized QKD

@ Alice and Bob use mismatched measurement outcomes to
establish R;; as discussed.

© They then choose optimal states to prepare and measure in.
@ l.e., Alice sends |1)g) = as|0) + y/1 — a2 |1) to encode a 0
and [¢1) = 55]0) + /1 — 32 |1) to encode a 1.

Q If Bob measures |¢g) = a, |0) + /1 — a2 |1) or
|p1) = B, |0) + /1 — B2 |1) his key bit is 0 or 1 respectively.



Optimized QKD

W, — BB84's key-rate | .349 0.001 0 .265
Optimized key-rate | .349 0.001 .038 .307
Optimized (as, 3s) | (1,0) (1,0) | (=1,.23)  (.23,—1)
Optimized (o, Gr) | (1,0) (1,0) | (—.94,.02) (—.97,—.01)

po1 | 07 126 .138 .079
pio | 07 126 191 120
paz | -07 126 .091 .034
pop | 07 126 | 058 063
poa| 5 5 523 526
pLa| 5 5 623 544
pao| 5 5 566 523
pob | 5 5 435 334
P1,b 5 .5 .505 .623
poo | 5 5 419 306




New Work: Semi-Quantum Protocol

© We also considered the semi-quantum protocol of Boyer et al.
[12] which uses a two-way quantum channel: A — B — A.

@ B can only measure in the Z = {|0),|1)} basis.

© Our method provided a superior key-rate bound to prior work
in [13]

A B

[0>, [1>, |+>,

E

ool :.

!"1‘::»- <
A ‘A

- - — L __ -
authenticated channel >

Figure: Boyer et al.'s SQKD Protocol [12]



SQKD - Evaluation

‘Independent Correlated

Old Bound From [13] 4.57% 5.34%
New Bound Using 2 Bases 5.4% 7.4%
New Bound Using 3 Bases 6.7% 8.76%

A B

[0>, [1>, |+>,
or |->

‘ :
Z

Figure: Boyer et al.'s SQKD Protocol [12]



Other Future Work

@ Consider imprecise parameter estimation more rigorously

© We only worked in the asymptotic scenario, a finite-key
analysis would be useful

© Try to adapt this technique to other two-way protocols; also
our work with the semi-quantum protocol can be improved



Thank you! Questions?
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