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SEMI-QUANTUM KEY DISTRIBUTION: PROTOCOLS, SECURITY

ANALYSIS, AND NEW MODELS

ABSTRACT

Quantum key distribution (QKD) allows two parties to agree on a secret key, secure

against even an all-powerful adversary. In 2007, Boyer et al. [Phys. Rev. Lett.

99] proposed the notion of semi-quantum key distribution (SQKD), which involves

the construction and analysis of quantum cryptographic protocols that operate when

one of the two users is limited to performing certain “classical” or “semi-quantum”

operations. This dissertation advances the state of the art in this field with new

protocols, novel analytic tools to assess the security of semi-quantum protocols, and

a new communication model.

Specifically, this dissertation develops a series of security results for “single-state”

SQKD protocols, i.e., protocols where one of the two parties (“Bob”) is classical,

whereas the other (“Alice”) is restricted to sending a single, publicly known state in

each iteration of the protocol. As an important corollary, attacks of the most general

form, captured mathematically via two unitary operators, are shown equivalent to

restricted attacks specified via a bias parameter b in [-1/2, 1/2] and a single unitary

operator. This restricted form in turn enables a complete security analysis of single-

state protocols, whereas the only known security results in this setting so far were

limited to the more rudimentary notion of “robustness.”

A second contribution of this dissertation is the design of a new single-state SQKD

protocol. This is the first SQKD protocol where “Hadamard-basis” states contribute

to the protocol’s key rate (all prior protocols used such states only to probe the

security of the channel). The unconditional security of this new protocol is established
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leveraging the techniques discussed earlier, and the resulting key rate is compared to

that of other (uni-directional) QKD protocols in the literature.

As a final contribution, this dissertation introduces a new type of SQKD protocols,

termed “mediated” SQKD protocols. In this setting, both Alice and Bob are limited,

classical users who aim at establishing an unconditionally secure secret key with the

help of a quantum server. Somewhat surprisingly, mediated SQKD protocols with

unconditional security are proven to exist even if the quantum server misbehaves

adversarially.
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Chapter 1

Introduction and Overview

Quantum Key Distribution (QKD) protocols allow two parties, referred to as Alice

and Bob (which we denote throughout as A and B respectively) to establish, through

the use of a quantum communication channel, a shared secret key, secure against

even an all powerful adversary, Eve (denoted E). Security in this setting is based not

upon computational assumptions, as is the case, for example, with classical public

key cryptology, but instead it is based on physical assumptions, Eve being bounded

in power only by the laws of physics. The first protocol to achieve this end was BB84

[1] - so named after the protocol’s creators: Bennett and Brassard in 1984. Since then

several other protocols, for instance B92 [2], three-state BB84 [3], and SARG04 [4]

(though there are many more), of varying advantages and disadvantages, have been

developed and their security analyzed. The reader is referred to [5, 6] for a general

survey.

QKD protocols are in existence today, both experimentally, and commercially.

There are currently four different companies which provide commercial QKD sys-

tems. They are MagiQ Technologies1 based in New York, id Quantique2 based in

Geneva, SeQureNet3 in Paris, and QuintessenceLabs4 in Australia. These companies

produce commercial hardware users can purchase allowing them to operate quantum

key distribution protocols.

Besides these commercial companies, quantum key distribution has also been used

in various applications. For instance, it was used in the 2007 national elections in

1http://www.magiqtech.com
2http://www.idquantique.com
3http://www.sequrenet.com
4http://www.quintessencelabs.com
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Geneva to transmit ballot results to the capital [7]. In 2004, quantum key distribution

was used for the first time to carry out a bank transfer in Vienna [8].

Beyond commercial implementations, there are also several research and govern-

ment run implementations of QKD systems. This includes the DARPA Quantum

Network [9] which consists of a 10-node QKD network running in Massachusetts since

2004. Los Alamos National Laboratory, since 2011, also runs a QKD network using a

“hub and spoke” system consisting of a trusted authority in the middle with several

clients connecting to it running a version of BB84 [10]. The EU funded project “Se-

cure Communication Based on Quantum Cryptography” or SECOQC [11] connects

six different locations in Vienna using 200km of fiber optic cable. Finally, the Tokyo

QKD Network [12], first turned on in 2010, connected several locations in Tokyo.

These QKD protocols, however, assume that both A and B are able to perform

various quantum operations. In particular, it is usually assumed that both parties

may prepare and measure qubits in at least two alternative bases: typically the

computational “Z” basis (|0〉 , |1〉) and the Hadamard “X” basis (spanned by |±〉 =

1√
2
(|0〉 ± |1〉)). Though there have been many various alterations to the assumptions

of A and B, it is still assumed that both may perform these “quantum” operations.

It was recently shown, however, in [13, 14], that QKD protocols may be con-

structed where A is allowed to perform quantum operations (such as preparing and

measuring in the Z or X basis), while B is limited to performing certain operations

which are “classical” in nature (exactly what B may do will be defined shortly).

Such a protocol, which allows this quantum A and “classical”/limited B to agree on

a secret key is called a semi-quantum key distribution (SQKD) protocol and they are

very interesting from a theoretical standpoint for they attempt to answer the question

regarding exactly how “quantum” a protocol needs to be to provide the same benefits

as its fully quantum counterpart (such as BB84).
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Such semi-quantum protocols also hold great potential from a practical standpoint.

With such protocols, we shift the complexity, as far as hardware implementation is

concerned, to a single user. One can envision a future key exchange infrastructure

where expensive quantum hardware is required only from one user (perhaps a large

commercial entity) while multiple, limited “classical” users, which require less hard-

ware, are connected to it. There are many other potential uses for semi-quantum

protocols: for instance military applications may be found where the more compli-

cated quantum user is a stationary base, while the classical users connecting to it,

thanks to their simpler hardware requirements, are mobile units. Later, when we

describe our mediated protocol, the practical advantages become even more clear.

An SQKD protocol typically operates with A starting the communication by send-

ing over to B a qubit, prepared in either the Z or X basis. Bob then, who is the

limited “classical”/semi-quantum user, may perform one of two operations: he may

either measure the qubit in the Z basis and prepare a new qubit in the same Z basis;

alternatively, he may simply “reflect” the incoming qubit, learning nothing about it,

back to A. There are other potential operations B may employ which we will discuss

in a subsequent chapter - it is these two operations, however, that are our primary

concern in this work.

After this quantum communication stage, A and B will, as is typical with QKD

protocols, use a public, authenticated classical communication channel (a channel

that E may read from, but not write to) to estimate the error rate of the quantum

channel; to perform an error correcting protocol; and finally, to perform a privacy am-

plification protocol which takes their “raw” key, which was distilled from the quantum

communication stage and error-corrected, and outputs a new, smaller, secure secret

key. See [5] for more information on this process.

Observe that these semi-quantum protocols rely on a two-way quantum commu-
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nication channel; that is a channel which permits a qubit to be sent from A to B,

and then back again. This makes their security analysis difficult due to E’s ability

to interact twice with the sent qubit. Up until now, most work concerning the secu-

rity of SQKD protocols has involved proving they are robust - a notion described in

[13], whereby any attack by the eavesdropper E, which causes her to learn non-zero

information, causes a detectable disturbance. However, a typical operation of any

quantum channel induces some noise and it does not make sense for A and B to

simply abort if they detect even the slightest error in their communication; thus it

becomes important to calculate exactly (or at least determine a bound on) how much

noise a protocol can tolerate before E has potentially too much information that a se-

cure key cannot be distilled. Some authors [15, 16] have performed a security analysis

when E is restricted to individual attacks - those where E performs the same attack

each iteration and is forced to perform a measurement of her private ancilla before

the key is used for anything. These are not as strong as collective attacks however,

where, again, E is forced to use the same attack each iteration, however she may

wait to perform a measurement. See [5] for more information on the different attack

scenarios (we will discuss this, in greater detail, in Chapter 2). Our work, however, is

the first to consider security against collective attacks. Furthermore, by utilizing re-

sults in [17, 18], security against collective attacks implies, for the protocols discussed

here, security against any arbitrary, general attack.

In this dissertation, we are interested in further analyzing SQKD protocols, in par-

ticular their security. After introducing the basic concepts of quantum communication

(e.g., qubits, measurements, density operators, etc.) and quantum key distribution

(Chapter 2) and also after a survey of related work (Chapter 3), we will, in Chapter

4, prove a variety of security lemmas concerning single state SQKD protocols (semi-

quantum protocols where A always sends a single, publicly known state each iteration
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— typically |+〉). In particular, we will show that, for such protocols E may actually

perform a simpler attack without any loss of power. This result holds for protocols

where A sends one of two orthogonal states; however we will also show the result is

not necessarily true when A sends one of three states each iteration, or B prepares a

qubit different from his measurement result. These results are based on a paper we

published in [19].

We will then apply these results to provide an alternative and simpler proof of

robustness for the single state SQKD protocol of [20]. This technique we believe could

be very useful in proving the robustness of future single state SQKD protocols. Then,

turning to collective attacks in the asymptotic scenario, we also apply this result to

find an upper-bound on the difference between the key rate [5] of this SQKD protocol

and the three-state BB84 protocol [3]. We believe this technique may be useful for

analyzing the security of other semi-quantum key distribution protocols.

Next, in Chapter 5, we design a new single state SQKD protocol which, instead

of using the measurement results to sift a raw key, as is the case with all other SQKD

protocols (not only single state), uses Bob’s actual operation to determine the bit

string. Namely, if B chooses to reflect, this will constitute a key bit of 0; otherwise

if B chooses to measure and resend this will correspond to a 1. Thus this protocol

demonstrates, for the first time, the possibility of using reflections and X basis qubits

to carry information, even though classical Bob cannot work directly with such qubits.

Prior SQKD protocols simply use the X basis to measure the noise of the channel.

This protocol is based on our work in [19].

Chapter 5 concludes by considering the key rate of our new protocol in the asymp-

totic scenario. In particular, we will show an explicit attack on our protocol, found

using our search algorithm described in [21], which introduces a quantum bit error

rate (QBER) of 5.6% yet causes the key rate [22] to drop below zero. This provides
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an upper-bound on the tolerated error rate (the maximal amount of error before an

adversary potentially holds too much information for even privacy amplification to

distill a secure key) of this SQKD protocol. We will also bound the effects of E’s bias

attack on the key rate of this protocol.

Finally, in Chapter 6 we will introduce the notion of mediated semi-quantum key

distribution. In this scenario, both A and B are limited and classical. We design a

protocol which allows them to establish a shared secret key using the services of a

quantum server. However, this quantum server is not trusted - in fact we will prove

the unconditional security of our protocol assuming the worst case: that this server

is the adversary. The server is required to prepare certain quantum states, perform a

Bell measurement, and report on the results of this measurement. However, since this

server is adversarial, A and B do not trust that the state initially prepared is the one

specified by the protocol; nor do they necessarily trust that the server’s measurement

report is correct (if the server actually measured at all). Despite this, we will prove

that this protocol allows the two classical users to establish a secure secret key so

long as the noise in the quantum channel is less than 10.65%, a bound very close to

that of the BB84 [1] protocol which allows up to 11% error [22].
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Chapter 2

Preliminaries

2.1 Basic Concepts and Notation

We will now briefly describe the concepts and notation of quantum computing re-

quired to understand this work. For more detailed information, the reader is referred

to [23] (from which the information in this chapter is derived).

A classical bit may be zero or one. It may be copied exactly and read at any time

without any loss or disturbance. A quantum bit (or qubit) may also be zero or one

(denoted |0〉 and |1〉 respectively - these |·〉’s are called kets in Dirac’s braket notation

[24]), however it may also be in what is called a superposition of both zero and one

which we denote: α |0〉+β |1〉. The α and β are called probability amplitudes ; these are

complex numbers such that |α|2+|β|2 = 1. One cannot, with probability one, copy an

arbitrary qubit. Furthermore, “reading” a qubit (called measuring) is a probabilistic

process whereby the qubit is potentially destroyed. Indeed, if we were to measure the

state α |0〉 + β |1〉, we would not see this superposition - instead we would observe

|0〉 with probability |α|2 (that is, after measuring, the measurement function/device

reports not α |0〉+ β |1〉, but instead simply |0〉); otherwise, with probability |β|2, we

would see |1〉. After this measurement process the original superposition is destroyed

and “collapses” to (becomes) the observed state |0〉 or |1〉.

More generally, we may consider an n-dimensional quantum system as living in

an n-dimensional Hilbert space which for our purposes we may think of as simply

the vector space Cn with the usual dot-product serving as inner product. When

considering such a system we will generally define an arbitrary orthonormal basis for
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this space denoted: {|0〉 , |1〉 , · · · , |n− 1〉}. Orthonormal implies that each basis

ket |i〉 is normalized and, for each i 6= j, the inner product of |i〉 with |j〉 is zero.

Each of these kets (the |i〉’s) are simply n column vectors with complex entries.

Unless otherwise stated, in this work we will assume that this basis is the standard

“computational” basis; that is: |i〉 = (0, · · · , 0, 1, 0, · · · , 0)T , with the i’th entry a one

and (·)T representing the transpose operation (since kets are column vectors).

An arbitrary state in this n-dimensional system can then be written as a superpo-

sition of these basis states. That is: |ψ〉 =
∑n

i=1 αi |i〉 where αi ∈ C and
∑

i |αi|2 = 1.

We may manipulate these states as we would ordinary vectors; thus the state |ψ〉 is

simply a C-linear combination of the basis states |i〉 and we may write it as a vector

(often called a state vector): |ψ〉 = (α1, α2, · · · , αn)T . A measurement of this state

produces one of the n basis states |i〉 with probability exactly |αi|2 (note that some

of the αi’s may be zero, in which case |i〉 is never measured). As with the qubit

case (which is a two-dimension system), the original superposition is destroyed and

collapses to the observed basis state.

For every ket |ψ〉 there is a corresponding bra (thus the name “braket” notation -

a play on the word bracket), denoted 〈ψ| which is simply the conjugate transpose of

the ket. Thus a bra is a row vector. Observe that, for any two arbitrary n-dimensional

quantum states |ψ〉 and |φ〉, the product (〈φ|)(|ψ〉), computed using ordinary matrix

multiplication, is a 1 × 1 matrix which we may view as simply a scalar in C. This

value is exactly the dot-product (inner-norm) of these two vectors. This, being a

common operation, is denoted simply as: 〈φ|ψ〉, the result of which is considered a

scalar in C (not a 1 × 1 matrix). Observe that we may now write the requirements

for an orthonormal basis simply as: 〈i|j〉 = δi,j, where δi,j is the Kronecker delta

function.

Another important computation occurs when we multiply |φ〉 with 〈ψ| denoted
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simply: |φ〉 〈ψ|. This produces an n× n matrix with complex entries. We will return

to this shortly.

Given two Hilbert spaces H1 and H2 of dimension n and m respectively, we may

combine these two spaces into a new n · m dimensional space denoted H1 ⊗ H2. If

{|1〉1 , |2〉1 , · · · , |n〉1} is an orthonormal basis of H1 and {|1〉2 , |2〉2 , · · · , |m〉2} is

an orthonormal basis of H2, then we define an orthonormal basis of H1 ⊗ H2 by

{|i〉1 ⊗ |j〉2 | i = 1, 2, · · · , n; j = 1, 2, · · · ,m}. Given two column vectors |ψ〉 and |φ〉

(of size n and m respectively), the tensor product, denoted |ψ〉⊗|φ〉, results in a n ·m

column vector. This is easily computed. If |ψ〉 = (α1, α2, · · · , αn)T , then:

|ψ〉 ⊗ |φ〉 =



α1 |φ〉2

α2 |φ〉2
...

αn |φ〉2


,

where each αi |φ〉 is an m column vector constructed by the scalar multiplication of

αi with |φ〉. The corresponding bra: 〈ψ| ⊗ 〈φ| is constructed similarly. To simplify

notation, we often write |ψ〉 |φ〉; if the context is clear, we will often drop the subscripts

or even simply write |ψ, φ〉.

This process may be repeated to combine three or more Hilbert spaces.

Besides measurements, another important operation is the application of a unitary

operator. An n×n matrix U is said to be unitary if UU∗ = I. Here U∗ is the conjugate

transpose of U and I is the n× n identity matrix. Given an n-dimensional quantum

state |ψ〉, one may apply any unitary operator to it. The resulting state is simply

U |ψ〉, which may be computed using basic matrix multiplication; note that the result

is a new column vector.

If given a joint system H1 ⊗ H2, where dimHi = di (thus the dimension of the
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joint system is d1d2), one may construct a unitary operator U , acting on the entire

space, as a d1d2×d1d2 unitary matrix as described above. However, if given a unitary

matrix U1 which acts only on H1 (thus it is a d1 × d1 matrix) and a unitary matrix

U2 acting only on H2, one may construct the operator U := U1 ⊗ U2 which acts on

the entire joint system. The action is simply: U(|ψ〉1 ⊗ |φ〉2) = (U1 |ψ〉1)⊗ (U2 |φ〉2).

If U1 = (ui,j)
d1
i,j=1, then:

U =



u1,1U2 u1,2U2 · · · u1,d1U2

u2,1U2 u2,2U2 · · · u2,d1U2

...
...

ud1,1U2 ud1,2U2 · · · ud1,d1U2


, (2.1)

where, ui,jU2 is a d2 × d2 matrix resulting from the scalar multiplication of ui,j with

U2. It can be shown that U is a unitary d1d2 × d1d2 matrix and thus a permissible

quantum operator on the joint system. This process may also be repeated multiple

times in case there are three or more subspaces.

2.2 Mixed States

LetH be an n-dimensional Hilbert space spanned by orthonormal basis {|1〉 , · · · , |n〉}.

The state |ψ〉 =
∑n

i=1 αi |i〉 = (α1, · · · , αn)T is called a pure state (even though it is a

superposition, it can be represented as a state vector). Very often in quantum com-

puting, it is useful to consider a more general mixed state which may be represented,

not by an n × 1 vector, but instead an n × n matrix, with complex entries, called a

density matrix. Any pure state |ψ〉 may be represented by the density matrix: |ψ〉 〈ψ|

(recall that we are multiplying the column vector |ψ〉 with its conjugate transpose (a

row vector) thus resulting in an n× n matrix). Mixed states, which describe a prob-

ability distribution over pure states, cannot be represented as a state vector. Given a
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collection of pure states {|φi〉}ki=1, an example of a mixed state is: ρ =
∑k

i=1 pi |φi〉 〈φi|

where k > 1, pi ∈ R+,
∑

i pi = 1. This state ρ, models a system which is in (pure)

state |φi〉 with probability pi.

It should be observed that density matrices are Hermitian, positive semi-definite

matrices with trace 1.

There are various circumstances where mixed states arise. For instance, suppose

we are given a quantum system prepared in some initial state by another individual.

We know that the state which was prepared was one of |φi〉 and that the probability

that the preparer sent us the state |φi〉 is exactly pi; however we do not actually know

which state was prepared. This situation may be described with the density matrix ρ

described above. Alternatively, suppose we started with a system |φ〉 (a pure state),

and performed a measurement on it but did not observe the result (or maybe someone

else measured the system and gave it back to us without telling us the measurement

result). This measurement probabilistically collapsed the state to one of the basis

states. Such a state may now be represented as a mixed state.

Mixed states also arise when dealing with “imperfect” state preparations, errors,

and when modeling environment “noise”.

Let us now describe how measurements are performed on density matrices. Fol-

lowing that, we will discuss the application of unitary operators.

Given a joint system H := H1 ⊗ H2 ⊗ · · · ⊗ Hk, with each Hi spanned by the

orthonormal basis {|0〉i , |1〉i , · · · , |di − 1〉}, we may perform a measurement on any

one of the k subspaces (leaving the others unmeasured). To do so, we first define, for

all appropriate i, j, measurement operators:

M(i, j) = I1 ⊗ I2 ⊗ · · · ⊗ Ii−1 ⊗ |j〉 〈j|i ⊗ Ii+1 ⊗ · · · ⊗ Ik, (2.2)
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where Im is the identity operator acting on Hm (i.e., it is the identity matrix of size

dm × dm, where dm = dimHm). Let ρ be a D×D density matrix where D = dimH.

Then, if we perform a measurement of the i’th subspace of H, Hi (that is, we measure

only the i’th component of ρ), the probability of observing outcome |j〉i is: pi,j :=

tr(M(i, j)ρ). Here M(i, j)ρ is computed via matrix multiplication and tr(·) is the

trace operation. Furthermore, on observing outcome |j〉i, the state collapses to:

ρ′ =
M(i, j)ρM(i, j)

pi,j
=
M(i, j)ρM(i, j)

tr(M(i, j)ρ)
,

To measure multiple subspaces, one may repeat this process measuring first one sub-

space, followed by another, and so on. Also, our choice of basis was arbitrary: one

may define an alternative basis for Hi, define the operator M(i, j) with respect to

that basis (replacing the |j〉 〈j|i portion with the new j’th basis vector) and repeating

the above.

Two important bases we will consider in the two-dimensional (qubit) case are the

computational Z basis, already defined as {|0〉 , |1〉}, and the Hadamard X basis,

denoted {|+〉 , |−〉}, where:

|±〉 =
1√
2

(|0〉 ± |1〉).

Unitary operators work similarly as with pure states, however now we require two

multiplications. Indeed, given density matrix ρ and a unitary operator U , then, after

applying U to the quantum system, the new state is described by the density matrix:

ρ′ = UρU∗. (2.3)
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2.3 Partial Trace, Entropy, and the Trace Norm

If ρAB is a density operator acting on the Hilbert space HA ⊗ HB, we can com-

pute its partial trace; that is, we may trace out one of the subspaces HA or HB,

an operation denoted trA(ρAB) leaving a density matrix ρB (alternatively ρA, with

the trace operation denoted trB(ρAB)) which describes only the HB portion (respec-

tively HA) of the original state. Let {|i〉A} be an orthonormal basis for HA and write

ρ =
∑

i,j |i〉 〈j|A ⊗ ρ
i,j
B . To trace over HA, we simply compute:

ρB = trA(ρAB) = trA

(∑
i,j

|i〉 〈j|A ⊗ ρ
i,j
B

)
=
∑
i

ρi,iB . (2.4)

The computation of trB(ρAB) is similar (leaving a density matrix ρA acting only

on HA). If ρABC··· is a density matrix acting on the joint system HA ⊗ HB ⊗ · · ·

(finitely many times), we will often take the notational shortcut of writing ρAC··· to

mean trB(ρABC···); similarly for the removal of any combination of subscript letters.

Given a density matrix ρ, it is often useful to compute its von Neumann Entropy

- the extension of Shannon entropy to the quantum domain - denoted S(ρ). It is

defined as S(ρ) = −tr(ρ ln ρ). If {λi}Di=1 are the eigenvalues of ρ (note that since ρ is

Hermitian, all eigenvalues are real; furthermore they are non-negative due to ρ being

positive semi-definite), this may be computed as: S(ρ) = −
∑

i λi lnλi.

A second important computation is the trace distance of two density matrices ρ

and σ (both acting on the same Hilbert space). This we denote ∆(ρ, σ) := 1
2
||ρ− σ||

where ||A|| represents the trace norm of matrix M defined as ||M || := tr(
√
M∗M)

(here N =
√
M∗M is a matrix such that N2 = M∗M). For our purposes (working

only with density matrices which are Hermitian), if {λi}Di=1 are the eigenvalues of the

(Hermitian) matrix ρ− σ, then:
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∆(ρ, σ) =
1

2

D∑
i=1

|λi|. (2.5)

2.4 Quantum Key Distribution

The first quantum key distribution (QKD) protocol was developed by Bennett and

Brassard in 1984 [1]. Since then several protocols have been proposed and analyzed

(e.g., SARG04 [4], the six-state BB84 protocol [1, 25], the three-state BB84 protocol

[3], higher-dimensional protocols [26, 27], and the B92 protocol [2] just to list a few;

also see [5] for more information). These protocols permit two participants, Alice (A)

and Bob (B), to agree on a secure secret key even when faced with an all powerful

adversary Eve (E). In general no restrictions, beyond those forced upon her by the

laws of physics, are placed on E.

These protocols assume the existence of a quantum communication channel, per-

mitting A and B to swap quantum resources (typically qubits). After communicating

with qubits, generally with A preparing a qubit, then B measuring it, A and B share

some random information called a raw key (we will also denote this raw key, often

called an info string in the semi-quantum literature, by infoA and infoB). It is to

be desired that their respective raw keys almost match (noise in the channel or, as

we will see, noise induced by E’s attack will make an exact match unlikely).

QKD protocols also require a classical public authenticated channel which allows

A and B to send classical messages to one another. This channel is authenticated,

however, so while the attacker E may listen in on any message sent over this channel,

she cannot send messages of her own. This authenticated channel is used, at least,

to perform an error correcting protocol, and privacy amplification protocol to first

remove any errors from their raw key and then distill a smaller, secure secret key.
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More information on these processes will be provided later.

E meanwhile captured and probed each qubit, via the application of a unitary

operator entangling the sent qubit with her own private ancilla HE, before forwarding

it to the recipient (either A or B depending on the protocol). Exactly how E performs

this attacks depends on the attack model under consideration. There are typically

three [5]:

1. Individual Attacks: On each iteration, E will apply a unitary U , acting

on the qubit and her private ancilla HE. The same attack U is used on each

iteration. When the quantum communication stage is complete, E will measure

her ancilla. This measurement may be any POVM, however it is performed

before error correction (EC) and privacy amplification (PA).

2. Collective Attacks: Like individual attacks, E will again use the same oper-

ation U on each iteration. However she may now wait to measure her ancilla

until some point in the future. For instance, she may wait to perform an opti-

mal measurement until after she has seen a cipher text sent using the distilled

secret key (after EC and PA).

3. General Attacks: E may perform any arbitrary attack on each iteration.

For instance, she may apply different unitary operators on each iteration; or

different attacks based on measurements in past iterations.

This paper concerns itself mostly with collective attacks. We have been claiming

up until now that we consider an all powerful adversary; however as it turns out, for

the protocols we will be considering, we may, using the results of [28, 22], show that

security in this case implies security under general attacks. Showing security against

collective attacks is simpler than the general case due to various simplifications one
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may consider. It is important to note that the same is not true if one only considers

individual attacks.

To illustrate, we will consider the BB84 protocol [1], the quantum communication

stage of which works by repeating the following:

1. A sends a qubit prepared randomly from one of the forms: |0〉 , |1〉 , |+〉, or |−〉,

each chosen with equal probability 1/4.

2. B will choose randomly, and independently of A, to measure the incoming qubit

in either the Z or X basis. If he chooses Z and if A sent |0〉 or |1〉 they now

have a shared bit of information; likewise if A sent |+〉 or |−〉 and B choose to

measure in the X basis (they agree publicly that, as far as their raw keys are

concerned, a |+〉 represents a classical 0 while |−〉 represents a 1). All other

cases are disregarded (next step).

3. B informs A of his measurement choice (but not the measurement result). A

tells B whether to keep or reject the iteration (rejection taking place if A sent

|0〉 or |1〉 while B measured in X; likewise for the other case).

Repeating this N times, for N sufficiently large, B will divulge a small, randomly

chosen subset of his measurement results to A (using the authenticated public chan-

nel). Doing so allows A and B to estimate the amount of noise in the quantum channel

thus permitting them to compute an upper bound on the amount of information E

can possibly hold on their key. If the noise is low enough (that is, if E’s “probe” was

weak enough), A and B will finish with EC and PA to distill a secure secret key.
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Figure 2.1: Diagram of BB84 [1].

2.5 Key Rate in the Asymptotic Scenario

If we assume that all noise in the quantum communication channel is caused by Eve,

as is the common approach [5], a question of great interest then is to calculate exactly

how much error these protocols can withstand before Alice and Bob are unable to

distill a secure secret key even after privacy amplification. Essentially, the question

is, to what value should we set the security threshold parameters to so that, if Alice

detects more than that many errors, the protocol aborts.

We will now be adopting the notation and definitions described in [22, 28]. It is

assumed that Alice and Bob repeat the quantum communication stage of a protocol

until they are able to compute an n-bit raw key denoted infoA and infoB. At this

point, A, B, and E share a tripartite system ρABE. Following this, they will perform

an error correcting protocol so that, with high probability, infoA = infoB. They will

then perform privacy amplification - a process that will distill an l(n) ≤ n bit key that

is ε secure. That is to say, if, after performing the quantum communication (resulting
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in state ρABE), error correcting, and privacy amplification, the joint system, shared

by A, B, and E is in the state σABE (where now the systems A and B hold the l(n)

bit distilled key and E now consists of additional information gained by Eve during

the public discussion), it holds that:

∆(σABE, τK ⊗ σE) =
1

2
||σABE − τK ⊗ σE|| ≤ ε,

where σE = trAB(σABE), τK is the completely mixed state of all possible key values

chosen with equal probability [5], and || · || is the trace norm. Such a requirement on

the protocol leads to the notion of composable security which allows Alice and Bob

to safely use their resulting key for any other cryptographic tasks. Intuitively, the

above definition implies that the resulting distilled key is “almost” the same as one

drawn from uniform independently of E’s system.

A useful measure of a protocol’s effectiveness is the key rate. That is, how many

ε secure bits may be distilled from n info bits (denoted l(n) ≤ n). In the asymptotic

scenario, this is defined as:

r := lim
n→∞

l(n)

n

Let us assume, for the time being, that Eve is restricted to collective attacks;

these are attacks where Eve performs the same attack operation on each quantum

communication iteration (however she is not required to perform any measurements

until such time that is most advantageous to her). If ρ̃ABE is the tripartite density

operator describing the system immediately after the protocol’s quantum communi-

cation (and before error correction and privacy amplification), then it is of the form

ρ̃ABE = ρ⊗nABE, where ρABE describes the system after a single iteration of the quan-

tum communication stage. For such a state, it was then shown in [29] that, assuming
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collective attacks and no preprocessing, the key rate is:

r = S(A|E)−H(A|B) (2.6)

(note we use the equivalent version presented in [30] which we find easier to work

with). Where S(A|E) = S(ρAE)− S(ρE); S denotes the von Neumann entropy; and

H denotes the classical conditional entropy.

Thus, so long as r > 0 it is possible for Alice and Bob to distill an ε secure key

(in the asymptotic scenario, and with the equation described above, it is assumed ε

is a function of n which approaches 0 as n approaches infinity). Clearly the value of r

depends not only on the protocol in question but on the attack operator used by Eve.

This attack must induce some amount of noise that the protocol can detect. The

question then is, how much error can a protocol withstand before r ≤ 0 (before Eve

has too much information, and/or before there is too much error in the info strings

that error correction leaks too much information). For example, the BB84 protocol,

assuming no post-processing, can withstand a quantum bit error rate (QBER) of 11%

[31] - that is to say, if, after Alice and Bob verify that the amount of error induced

in the Z and X bases is no higher than 11%, it is guaranteed that r > 0 and thus,

they may generate a secure key. Anything higher than 11% and this is no longer

guaranteed (so they should abort).

2.6 Semi-Quantum Cryptography

Prior QKD protocols all assumed that the two users A and B were allowed to work

directly with quantum resources. In particular, they were both capable of preparing

and measuring qubits in a variety of bases (e.g., the Z and X bases). However, in

2007, Boyer, Kenigsberg, and Mor introduced a new field of study which they called
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Semi-Quantum Key Distribution (SQKD) [13]. Now, instead of assuming both A and

B are capable of working with quantum resources, we assume only A is allowed to

do so, while B is limited to performing certain “classical” operations. Such an A is

called a fully-quantum user ; the limited B is called a classical user or a semi-quantum

user. Protocols which allow for the establishment of a secure secret key when there

is at least one classical user, are called semi-quantum protocols. Of course we make

no assumptions on the attacker who is fully quantum and bounded only by the laws

of physics.

In more detail, an SQKD protocol relies on a two-way quantum communication

channel - one where a qubit is allowed to travel from A to B, then back to A. This

greatly complicates the security analysis of the protocol as the attacker is now able

to interact twice with the qubit. For this reason, most semi-quantum protocols have

been proven secure with respect to the following definition of robustness:

Definition 2.6.1. From [13]: An SQKD protocol is called robust if, for any attack

employed by E which allows her to potentially gain information on either A or B’s

raw key (before error correction), necessarily induces a disturbance which may be

detected by either A or B with non-zero probability.

Note that this is a much weaker definition of security when compared to the key

rate computation described last section. Robustness only tells us an attack can be

detected - but it says nothing about the size of the final key based on the amount

of induced noise. Robustness also does not say anything about how much noise a

protocol can withstand before A and B should abort.

We will now describe B’s limitations in greater detail. The classical user, when

given a qubit from a fully-quantum user, is allowed to perform one of the following

operations:
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1. Measure and Resend: The classical user may measure any incoming qubit in

the computational Z basis and resend the result. That is, if the measurement

resulted in outcome |r〉, for r ∈ {0, 1}, then the classical user will prepare a new

qubit of the form |r〉 and send it.

2. Reflect: The classical user may simply ignore the incoming qubit and “reflect”

it back to the fully-quantum user. When performing this operation, the classical

user learns nothing about its state and does not disturb the qubit in any way.

There have been some variations to these restrictions. For instance, in [32, 16], B

was allowed to Measure and Prepare: that is, measure in the Z basis, and prepare a

new qubit in either state |0〉 or |1〉 (not necessarily the same state that was measured).

However, it is the reflect and the measure and resend operations that we are interested

in here. Note that B is limited to only working directly with the Z basis.

To illustrate how such protocols typically operate, we recall the first SQKD pro-

tocol of [13]. Each iteration of this protocol operates as follows:

1. A will send a qubit of the form |0〉 , |1〉 , |+〉, or |−〉, choosing one at random (as

with BB84 [1]

2. B will choose randomly to reflect the qubit or measure and resend. If he mea-

sures and resends, he saves his measurement result as his raw key bit for this

iteration.

3. A will choose to measure in the same basis (Z or X) that she originally used

to prepare the qubit in.

4. B will now inform A of his choice to measure and resend or reflect.

• If B measured and resent and if A prepared (and thus later measured) in

the Z basis, they now share a random bit.
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• If B reflected and A prepared and measured in the X basis, this iteration

can be used to verify the security of the quantum channel in the X basis

(verifying the security in the Z basis may be done by disclosing a certain

amount of randomly chosen iterations where B measured, and A chose the

Z basis).

As usual, after they perform the above operation, they will, assuming the error

rate is “low enough,” run an error correcting protocol and a privacy amplification

protocol. However, up until our work, to be presented in this dissertation, no one

knew how low was “low enough” as most protocols were only proven robust (which

only states that noise implies an attack), or secure against individual attacks - which

is too weak a notion for general security.
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Chapter 3

Related Work

3.1 Semi-Quantum Cryptography

Semi-quantum key distribution was introduced in [13]. In that source, the authors

introduced the concept of a classical user. They also introduced the security notion of

robustness and described a protocol which allowed a fully quantum A and a classical

B to agree on a secret key; they also proved the protocol was robust. A second semi-

quantum protocol was introduced, by the same authors, in [14] along with a proof of

its robustness.

In [20], Zou et al., designed semi-quantum protocols where the fully quantum user

is limited to preparing three, two, or even one state each iteration (as opposed to the

original SQKD protocol which allowed A to choose from all four BB84 states). We

call a semi-quantum protocol where A is limited to sending a single, publicly known

state, each iteration of the quantum communication stage a single state protocol and

they are of great interest to us in this dissertation. With such protocols, A is limited

to preparing and sending only one type of state |a〉 (typically |a〉 = |+〉). She cannot

prepare a different state on any of the iterations. Furthermore, E is fully aware that

the qubit leaving A’s lab is |a〉. Despite this limitation, it was shown in [20] that

robust protocols exist.

Extending their work, [15] described an equation which relates the information

gain of E as a function of the disturbance caused by her individual attack. This

is a good step forward from robustness; however the ultimate goal is to show secu-

rity against collective attacks (which are sufficient to prove security against general
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attacks).

Many other protocols were developed since these first [32, 33, 34]. All of these

protocols utilized measurement results directly to distill a raw key (e.g., a measure-

ment of |1〉 implied a key bit of 1 for that iteration). In [32], the idea of allowing

B to send a qubit in a different state than what he measured (though still in the Z

basis) was introduced. A similar idea was used in [16]. Though this ability, in the

single-state case, seems to add some extra complexity to the security analysis.

Other protocols, such as [35, 16], were designed to allow a fully quantum A, to

distill a secure secret key with multiple classical users B,C, . . . . The protocol of [35]

required the quantum user A to be fully trusted (and this user is also a key holder).

The protocol described in [16] operated over a cycle topology, allowing a qubit to

travel from A to B, then to C, and finally back to A. An important consideration

in their security proof was that A could not access the channel between B and C.

Such a protocol allowed B and C to establish a secure key which A could not gain

information on. We will return to this idea shortly. We observe, however, that besides

proving robustness, this protocol was also shown secure against individual attacks.

Beyond key distribution, there have been several secret sharing protocols designed

allowing a quantum A to share a secret with two semi-quantum users B and C

[36, 37, 38, 39]. Security in all these protocols was based on a notion of robustness.

3.2 Mediated Quantum Key Distribution

We define a mediated QKD protocol (also referred to as a multi-user QKD protocol

in some literature) as a protocol which allows two or more users to establish a secure

key with the help of an untrusted quantum server. This server should be unable to

gain information on the key (without causing a disturbance at least) and, in fact, is
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often considered to be the adversary.

While there have been several mediated QKD protocols developed, none, with the

exception of [16], were for the semi-quantum setting. However, we observe that the

protocol in [16] required the existence of a private quantum channel connecting the

two semi-quantum users A and B: while E was allowed access to this channel, the

quantum server C was not. In fact, it is not difficult to show that their protocol is

insecure in the event the quantum server is given access to this channel.

The first multi-user QKD protocol (not semi-quantum) was designed by Phoenix

et al., in [40]. Their protocol required the server to prepare and send Bell states (one

particle to each quantum user). A and B then performed certain unitary operations

on their respective qubits, returning the result to the server.

The mediated QKD protocol described in [41] required the two users A and B

to prepare and send qubits to the server C in one of the four states |0〉 , |1〉 , |+〉, or

|−〉. The server then stored them in a quantum memory until some future time when

A and B wish to distill a secret key (this can be a long time delay). The protocols

described in [42, 43, 44, 45] all required the two users to perform both Z and X basis

measurements. The protocol of [43, 46] required the users A and B to apply various

unitary operators on qubits sent to them from the server.

In [47], a protocol was designed which required the two users to prepare Bell

states (the server performed Bell measurements). The security of this protocol was

later improved in [48, 49] by requiring the users to measure in both Z and X bases.

In [46], the server prepared states involving the entanglement of four qubits. This

was later improved in [44]. Furthermore, this protocol required that one of the two

users perform a Bell basis measurement.
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Chapter 4

Security of Single State Semi-Quantum Protocols

In this chapter, we discuss a set of security theorems that we have proven which apply

to any single state SQKD protocol. These results provide a general “tool-set” which

allow for the simplified mathematical analysis of such protocols. We will define a new

form of collective attack: the restricted collective attack which consists only of a single

real parameter in the range [−1/2, 1/2] and a single unitary operator. We will then

show that to prove security against the most general form of collective attacks, which

consist of two unitary operators, it suffices to consider and prove security against

only restricted collective attacks. This makes the security analysis of single state

SQKD protocols far simpler mathematically. These results are derived from a paper

we published in [19].

4.1 Definitions and Notation

To analyze an SQKD protocol, we will work with the following Hilbert space:

H = HA ⊗HT ⊗HE ⊗HB.

In this system, HA and HB are quantum registers used to model A and B’s private

(classical) memory. They may be spanned by such states as |0〉 and |1〉. Additionally,

B’s register may have states |measure〉 and |reflect〉. These registers are simply used

to model any “bookkeeping” required of A and B (for example, B must remember if

he reflected a particle on a certain iteration). While B is classical, and A does not

wish to use a quantum memory, our use of these registers will be exactly equivalent
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to these two parties simply saving their information in classical memory. We adopt

this use, however, as it provides a very convenient system of notation.

HT is used to model the two-dimensional qubit: it is the transit or travel space.

At the beginning of each iteration, A holds access to this space and prepares a new

qubit. Next it is “passed” to E who performs some attack operation on it. Following

this, B is allowed access to the transit space and he will measure and resend or reflect

(ignore) it. It is passed back to E who attacks a second time. Finally it is passed

back to A.

Lastly, HE is used to model E’s personal private ancilla space. It is, without loss

of generality, finite dimensional.

As mentioned, an SQKD protocol relies on a two-way quantum communication

channel - one that allows a qubit to travel from A to B, then back to A. In this section

we will consider two forms of collective attack (recall a collective attack is one where

E performs the same operation each iteration, however is allowed to postpone her

measurement to a time of her choosing). The first form is the most general collective

attack available to E:

Definition 4.1.1. A general collective attack consists of two unitary operators (UE,

UF ), both acting on HT ⊗HE. The attack consists of E applying UE on the forward

channel (when the qubit initially travels from A to B) and then applying UF on the

return (when the qubit is traveling from B to A).

We next consider a more restricted form of collective attack:

Definition 4.1.2. A restricted collective attack consists of a real number b and a

single unitary U acting on HT ⊗HE. This attack consists of E preparing the qubit:

|e〉 =

√
1

2
+ b |0〉+

√
1

2
− b |1〉 ,
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and sending it to B (regardless of the state A originally sent). On the qubit’s return

from B, E will apply the unitary operator U .

4.2 Core Results

Theorem 4.2.1. If B is a limited classical user, and if A is restricted to sending

a single qubit state |a〉 each iteration (the state of which is publicly known), and

assuming that E’s ancilla state is known to her (i.e., it is in some “zero” state |0〉E ∈

HE), then for every general collective attack (UE, UF ), there exists an equivalent

restricted attack (b, U).

Proof. Fix a general collective attack (UE, UF ) and let us first consider the result of

E applying this attack. After E applies UE to |a〉 in the forward direction, the state

evolves to |a′〉 = |0, e0〉 + |1, e1〉 where the |ei〉 are arbitrary states, not necessarily

orthogonal or normalized, in HE. Unitarity of U imposes the condition that 〈e0|e0〉+

〈e1|e1〉 = 1. E then forwards the qubit to B.

Next, B will, with probability pR reflect the qubit; otherwise he will measure and

resend (with probability pM = 1− pR). If he reflects, he will set his private quantum

register to some state σR (this may also store randomly chosen data for example).

Otherwise, if he measures |i〉, he will set his register HB to the state σM,i (this may

save his measurement result and some other data for example). These σ states are

density operators acting only on HB. We make no assumptions on these states other

then that they are density operators of unit trace.

Thus, after B’s operation, and when E receives a qubit from B, the state of the

quantum system is (ignoring A’s system which, in a single state protocol, is necessarily
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separate from HT at this point):

ρ = pR(|0, e0〉 〈0, e0|+ |1, e1〉 〈1, e1|+ |0, e0〉 〈1, e1|+ |1, e1〉 〈0, e0|)⊗ σR

+ pM(|0, e0〉 〈0, e0| ⊗ σM,0 + |1, e0〉 〈1, e1| ⊗ σM,1).

Now, let us consider the result of the following restricted collective attack. Let

α =
√
〈e0|e0〉 and β =

√
〈e1|e1〉. Since E has full information on her attack operator

UE, she may compute these two values. Since, for any vector x, 〈x|x〉 is real and

non-negative, α and β are both real and non-negative. It is clear, then, that there

exists a value b ∈ [−1/2, 1/2] such that α =
√

1/2 + b. Since α2 + β2 = 1, it then

holds that β =
√

1/2− b.

Assume, then, that E prepares the state |e〉 = α |0〉 + β |1〉 and sends this qubit

to B (unentangled with her ancilla). This is the first step of a restricted attack with

parameter b. B applies the same operations as before yielding the system:

ρrestricted = pR(α2 |0〉 〈0|+ β2 |1〉 〈1|+ αβ |0〉 〈1|+ βα |1〉 〈0|)⊗ σR

+ pM(α2 |0〉 〈0| ⊗ σM,0 + β2 |1〉 〈1| ⊗ σM,1))⊗ |0〉 〈0|E ,

note that, above, we assumed E’s system is cleared to some zero state |0〉E ∈ HE

known to her. (With collective attacks such an assumption may be made without loss

of generality.) We will now construct a unitary operator V such that V ρrestrictedV ∗ =

ρ.

Case 1: First assume that both α and β are non-zero. We define V ’s action on

states |i, 0〉 to be:

V |i, 0〉 =
|i, ei〉√
〈ei|ei〉

.
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Since E knows exactly how her probe UE operates, she has full information on the

states |ei〉 and so may construct such an operator. Note that it is not relevant how

V operates on states of the form |i, j〉 for j 6= 0 - its action may be arbitrary in such

instances. It is not difficult to see that this operator V is unitary.

Applying this operator, yields:

V ρrestrictedV ∗ = pR

(
α2

α2
|0, e0〉 〈0, e0|+

β2

β2
|1, e1〉 〈1, e1|

+
αβ

αβ
|0, e0〉 〈1, e1|+

βα

βα
|1, e1〉 〈0, e0|

)
⊗ σR

+ pM

(
α2

α2
|0, e0〉 〈0, e0| ⊗ σM,0 +

β2

β2
|1, e1〉 〈1, e1| ⊗ σM,1

)
= ρ.

Case 2: One of α or β is zero. This is similar, however, to the first case. We may

follow the above arguments, however we need not worry about V ’s action on |0, 0〉 if

α = 0, or |1, 0〉 if β = 0.

Since both α and β cannot both be zero (α2 + β2 = 1), we are finished. Indeed,

let U = UFV , then it is clear that the restricted collective attack (b, U) (where b

was defined above) yields the same density operator as if the general collective attack

(UE, UF ) had been applied. The quantum systems are indistinguishable. In particular,

the key rate equation, described in Chapter 2, are equal in both cases.

Since (UE, UF ) was arbitrary, the proof is complete.

This result shows that, at least for single-state protocols, the most general col-

lective attack is equivalent to a simplified attack where E simply “biases” the qubit

superposition (and thus B’s measurement results) and then attacks with a single uni-

tary operator. This b parameter makes sense when A is restricted to sending the state
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|+〉 each iteration. However, for other initial states, the same result holds.

We now consider how “tight” this result is. It is not difficult to see a similar

statement may be made if A prepares and sends one of |a〉 or |b〉 each iteration, chosen

randomly, if 〈a|b〉 = 0. Indeed, in this case, E may simply make a measurement of

the incoming qubit, and apply the same analysis as above. Of course, in this case

there may be two different bias values and two different unitary operators (one if A

sends |a〉 and the other if A sends |b〉).

For other scenarios, when A chooses to send a state |a〉 from a collection of non-

orthogonal states (e.g., if A chooses to send one of |0〉 , |1〉 , or |+〉), the question is

more difficult. In this case, the difficulty is in actually defining the restricted collective

attack. In the single-state case (or even in the two-orthogonal-state case), it made

sense that E would prepare a fresh qubit each iteration as she had full knowledge of

what state was leaving A’s device. This is not the case when A sends non-orthogonal

states.

Our first attempt at this is to consider a very general notion of restricted attack.

We define this as an attack whereby, on each iteration of the protocol, E sends a

qubit to B that is unentangled with her own ancilla HE. How she prepares such

a qubit is not relevant. She may prepare a fresh qubit of any form; or perhaps she

applies a unitary operator to the incoming qubit (from A) - though this operator must

act only on HT . This is a very broad definition and it includes the restricted attack

in the single-state case, however it is not entirely satisfactory as it does not include

the two-orthogonal-state case (where E performs a measurement and remembers the

result thus entangling the qubit with her private two-dimensional memory). There

may be other definitions that are worth considering in the future.

We will now show the existence of a general collective attack for which no restricted

attack, even using a definition as broad as ours, exists.
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Let |at〉 = αt |0〉 + βt |1〉 be the state A sends on iteration t, where αt and βt

are unknown to E (i.e., she chose to prepare this state probabilistically from a set

of states S which contains at least one pair that is non-orthogonal). Consider now

the result of E’s general collective attack (UE, UF ). We will define UE’s action on

basis states as follows (recall that E’s private ancilla is cleared to some zero state

|0〉 ∈ HE):

UE |0, 0〉 = |0, e0〉+ |1, e1〉

UE |1, 0〉 = |0, e2〉+ |1, e3〉 .

Unitarity imposes the usual restrictions on the states |ei〉.

Consider now the specific attack where 〈ej|ej〉 > 0 for all j = 1, · · · , 4 and

〈ej|ek〉 = 0 for all j 6= k. This can be done unitarily. By linearity, we have:

UE |at〉 = |0, ẽt0〉+ |1, ẽt1〉 where:

|ẽt0〉 = αt |e0〉+ βt |e2〉

|ẽt1〉 = αt |e1〉+ βt |e3〉 .

After B’s operation, the state becomes:

ρ = pRUE |at, 0〉 〈at, 0|U∗E ⊗ σR

+ pM
(
|0, ẽt0〉 〈0, ẽt0| ⊗ σM,0 + |1, ẽt1〉 〈1, ẽt1| ⊗M,1

)
.

Now consider the result of a restricted collective attack, according to our definition

described above. In this case, E will send the state |Et〉 = xt |0〉 + yt |1〉, for some
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xt, yt ∈ C. This may have been the result of a unitary operator action on the qubit

|at〉 only (and so it could be that |Et〉 = |at〉); or it may be something E prepared

fresh this iteration (though in this case, it must be the same state each iteration since

we are assuming collective attacks). After B’s operation, the system becomes:

ρrestricted = pR |Et〉 〈Et| ⊗ σR

+ pM
(
|xt|2 |0〉 〈0| ⊗ σM,0 + |yt|2 |1〉 〈1| ⊗ σM,1

)
.

(Note we did not bother writing E’s system down above, as it is cleared to |0〉E.)

From this, it is clear that the state initial sent by E must satisfy 〈ẽt0|ẽt0〉 = |xt|2

and also 〈ẽt1|ẽt1〉 = |yt|2. If this does not hold, the restricted attack is not equivalent

to the general one as B’s measurement operation produces outcomes with different

probabilities in each case (this may or may not be advantageous to E).

Now, E needs to apply a unitary operator V , acting on HT ⊗ HE such that

V ρrestrictedV ∗ = ρ. This cannot be done.

Indeed, consider iteration t = 0. From the above discussion, it must be that

V |0, 0〉 = eiθ
0
0 |0, ẽ0

0〉 /|x0|. On the next iteration, it is again required that V |0, 0〉 =

eiθ
1
0 |0, ẽ1

0〉 /|x1|. By our assumptions on the original attack (our assumptions on the

states |ei〉), x0 and x1 are both non-zero. By this, we have:

V |0, χ〉 = V |0, χ〉

⇐⇒ eiθ
0
0

|x0|
(α0 |e0〉+ β0 |e2〉) =

eiθ
1
0

|x1|
(α1 |e0〉+ β1 |e2〉)

⇐⇒
(
α0 −

|x0|
|x1|

ei(θ
1
0−θ10)α1

)
|e0〉 =

(
|x0|
|x1|

β1e
i(θ10−θ00) − β0

)
|e2〉

But, since 〈e0|e2〉 = 0 and 〈ei|ei〉 > 0 (by our initial assumptions on the general
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collective attack), it must be that α0 = xeiθα1 and β0 = xeiθβ1, where x = |x0|/|x1|

and θ = θ1
0 − θ0

0. This implies that |a0〉 = xeiθ |a1〉; that is, these two states which A

prepared, are equivalent (up to an irrelevant global phase change). In other words,

the state A sent on iteration 1 must be the same as on iteration 0 for the restricted

attack to be equivalent to the general one. Otherwise this cannot be guaranteed. Of

course this argument may be repeated for subsequent iterations.

Thus, Theorem 4.2.1 cannot be extended immediately to multi-state protocols.

However, there may be a better definition of restricted attack for this scenario which

does apply. In particular, perhaps a restricted attack could be defined as one where

E’s ancilla in the first attack is of dimension less that 4. This would make for

interesting future work.

Returning, however, to the single state case, the SQKD protocols of [32, 16] allow

B to measure in the Z basis but then prepare and send a new Z basis qubit in a

different state. That is, if he measures |r〉, he may choose to send |1− r〉. In this

case, there exist general collective attacks for which no equivalent restricted attack

exists.

Indeed, let |a〉 be the state A sends each iteration (this is a single state protocol).

Also assume that there is a non-zero probability that B, after measuring |r〉, may

send |1− r〉 (r ∈ {0, 1}). After E’s initial probe, in the general collective attack case,

the qubit evolves to the state |0, e0〉+ |1, e1〉. Since we only need to show the existence

of a general collective attack for which no equivalent restricted attack exists, let us

assume 〈ei|ei〉 > 0 and 〈e0|e1〉 = 0.

Consider now the restricted attack, where E simply sends the state |E〉 = α |0〉+

β |1〉. After B’s operation, E must construct an operator capable of mapping |0〉 to

eiθ0 |0, e0〉 /
√
〈e0|e0〉 in case B reflected (or measured |0〉 and resent |0〉); it must also

map |0〉 to eiθ1 |0, e1〉 /
√
〈e1|e1〉 in case B measured |1〉 but sent |0〉. But this, of
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course, implies:

|e0〉 =

(√
〈e0|e0〉√
〈e1|e1〉

)
ei(θ1−θ0) |e1〉 ,

which is not true in our example (where 〈e0|e1〉 = 0).

We conclude this section with one further theorem which turns out to be very

useful for proving the robustness of an SQKD protocol. This result states that, in

a single state protocol, in order to avoid detection, E cannot “bias” the state A

initially sent. Further, there is no advantage to her sending a different state. Thus,

when proving robustness of a single state protocol, it suffices to consider only the

result of E’s attack on the return channel.

Theorem 4.2.2. Let |a〉 be the state A initially sends each iteration of a single

state SQKD protocol and let |b〉 be a two-dimensional qubit state, orthogonal to |a〉.

Assume that, on any iteration, there is a non-zero probability that B will reflect

and A will measure in the {|a〉 , |b〉} basis to verify the security of the channel. Also

assume that there is a non-zero probability that B will measure and resend and A

chooses to measure in the Z basis, again for the purpose of verifying the security of

the channel. Then, assuming E is limited to restricted collective attacks (which are

sufficient in the single state case):

1. To avoid detection, E must send to B a state of the form |E〉 = α |0〉 + β |1〉

where |α|2 = | 〈0|a〉 |2 and |β|2 = | 〈1|a〉 |2.

2. If E wishes to avoid detection, there is no advantage to E in sending to B a

state other than |a〉.

Proof. Write |a〉 = γ |0〉+δ |1〉 for γ, δ ∈ C. Since this is a single state protocol, these

parameters are known to E. With a restricted attack, E will send to B the state

|E〉 = α |0〉+β |1〉 for α, β ∈ C (we are providing her with extra power now, allowing
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E to prepare a state with complex probability amplitudes, even though our previous

result showed they might as well be real).

After B’s operation, E will attack with a unitary operator U which acts on HT ⊗

HE. We may assume that E’s ancilla is cleared to some zero state, and so we may

describe U ’s action as follows:

U |0, 0〉TE = |U0〉 = |0, e0〉+ |1, e1〉

U |1, 0〉TE = |U1〉 = |0, e2〉+ |1, e3〉 ,

where |ei〉 are arbitrary states in HE satisfying the usual unitary conditions.

If B reflected, and after E’s attack U , the state of the quantum system is:

ρreflect =U |E〉 〈E|U∗ = |α|2 |U0〉 〈U0|+ |β|2 |U1〉 〈U1|

+ αβ∗ |U0〉 〈U1|+ α∗β |U1〉 〈U0| ,

where α∗, β∗ denote the complex conjugate and U∗ is the conjugate transpose of U .

Alternatively, if B measured and resent, the system is in the state:

ρmeasure = |α|2 |U0〉 〈U0|+ |β|2 |U1〉 〈U1| ,

in which case, in order to avoid detection, it must hold that |e1〉 = |e2〉 = 0. If this

is not the true, then A, measuring in the Z basis, would detect E’s attack. Thus we

may simplify the description of U to: |U0〉 = |0, e0〉 and |U1〉 = |1, e3〉 with 〈e0|e0〉 = 1

and 〈e3|e3〉 = 1.

Next, assume that B reflects and A measures in the {|a〉 , |b〉} basis. Let pa denote

the probability that A receives outcome |a〉 = γ |0〉 + δ |1〉 in this event. To avoid
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detection, it must be that pa = 1. From the above description of the state ρreflect, this

value is:

pa = |αγ|2 〈e0|e0〉+ |βδ|2 〈e3|e3〉+ αβ∗γδ∗ 〈e0|e3〉+ α∗βγ∗δ 〈e3|e0〉 .

Write γ =
√
peiθa , δ =

√
1− peiθb , and 〈e0|e3〉 = reiθe (for r ∈ [0, 1]). Also, write

α =
√
qeiθn and β =

√
1− qeiθm . We show that pa = 1 implies p = q thus proving

the first claim.

pa = |αγ|2 〈e0|e0〉+ |βδ|2 〈e3|e3〉+ αβ∗γδ∗ 〈e0|e3〉+ α∗βγ∗δ 〈e3|e0〉 ,

= qp+ (1− q)(1− p)

+ r
√
q(1− q)p(1− p)

(
ei(θn−θm+θa−θb+θe) + ei(θm−θn+θb−θa−θe)

)
≤ qp+ (1− q)(1− p) + 2

√
q(1− q)p(1− p).

(4.1)

Equality above, holds only if r = 1 and θe = θm − θn + θb − θa + 2πk (for k ∈ Z).

Observe that r and θe are both in E’s control and that θa and θb are public. Equation

4.1 is bounded by one and, since E wishes to avoid detection by setting pa = 1, it

must hold that she set the values r and θe as described. Thus pa = 1 yielding:

pa = qp+ (1− q)(1− p) + 2
√
q(1− q)p(1− p) = 1

⇒ p2 − 2pq + q2 = 0

⇒ p = q

This shows that q = |α|2 = p = |γ|2 = | 〈0|a〉 |2 and |β|2 = |δ|2 = | 〈1|a〉 |2, thus

proving the first claim of this theorem.

The second claim is obvious as E may always apply a unitary operator, arbitrarily

rotating the phase of |0〉 and |1〉 after B returns a qubit.
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Note that, the results in this section apply only to collective attacks. As we will

soon show, when proving the robustness of a protocol, this is sufficient. When moving

away from robustness to more rigorous definitions of security (for instance, computing

the key rate of a protocol in the asymptotic scenario), the results of [17, 18] may be

applied which state that to prove security against the most general form of attack

possible, it is sufficient to prove security against collective attacks. Thus, our results

above provide a powerful framework from which to prove the security of single state

SQKD protocols.

4.3 Further Results

We now show how Theorems 4.2.1 and 4.2.2 can be used to show the robustness of

the single-state SQKD protocol introduced in [20]. While these results apply only to

collective attacks, this is sufficient in the case of robustness if we assume A sends a

qubit only after receiving a response from B (the usual assumption in SQKD protocol

robustness proofs [20]).

Later we will consider how the bias term affects the key rate of this same protocol

in the asymptotic scenario. In particular, we will derive an expression bounding the

key rate of the SQKD protocol, in terms of the key rate of a known uni-directional

QKD protocol and a function of the bias term.

4.3.1 Robustness of the SQKD Protocol of Zou et al.

Let us first recall the single-state protocol of [20]. As we will be referring to this

protocol multiple times throughout this work, we will refer to it as SQKD-1. This

protocol operates as follows:

1. On each iteration, A sends the state |+〉 to B
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2. B chooses to measure and resend or to reflect the qubit. If he measures and

resends, he will save his measurement result to use as his raw key bit.

3. A will choose, randomly, to measure in the Z or X basis.

4. B informs A of his choice (but not his measurement result if he made one)

• If B measured and resent, and if A chose to measure in the Z basis, they

will share a bit of information

• If B reflected and A measured in the X basis, A can use this iteration to

verify the X basis security.

• All other cases are discarded

The above procedure will repeat N times. A and B will then run an error cor-

recting protocol, and a privacy amplification protocol as is usual in QKD protocols.

However, as with other proofs of robustness [13, 14, 20], we do not consider these

procedures when proving robustness (error correction necessarily leaks information

without detection).

Note that we may improve the efficiency of this protocol by employing a tech-

nique used in [50]. Namely, we alter the protocol so that A measures in the Z basis

more often than the X basis. Similarly, B will measure and resend more often than

reflecting. Thus, in the asymptotic scenario at least (which is all we consider in this

dissertation), the fraction of iterations which actually contribute to the raw key can

be made arbitrarily close to one.

Robustness of SQKD-1 was already proven in [20]. However, we now provide an

alternative proof based on our security results proven last section. This method of

proof extends easily to other single-state protocols, as we will demonstrate later.

Theorem 4.3.1. SQKD-1 is completely robust
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Proof. Let us consider the very first iteration of this protocol. Observe that there is

a non-zero probability that this iteration may be used to verify the security of the

channel, either in the Z basis or the X basis. Also, since this is the first iteration,

E’s private ancilla is cleared to some zero state (known to her). Thus, when the first

qubit is intercepted by E, Theorem 4.2.1 applies and, so, the most general attack E

may chose to employ at this point, is equivalent to a restricted attack (b, U). Thus, E

sends to B the qubit state |E〉 = α |0〉+β |1〉 where α =
√

1/2 + b and β =
√

1/2− b.

To avoid detection, however, Theorem 4.2.2 states that b = 0. Thus, E sends |+〉 to

B.

Next, B will either reflect (with probability pR), or measure and resend (with

probability pM = 1 − pR). As usual, B will store his decision and measurement

results (if any) in his own private register. Thus, the state of the quantum system,

when E receives a qubit back from B is:

ρ = pR |+〉 〈+|T ⊗ |0〉 〈0|E ⊗ |reflect〉 〈reflect|B

+ pM

2
|0〉 〈0|T ⊗ |0〉 〈0|E ⊗ |measure, 0〉 〈measure, 0|B

+ pM

2
|1〉 〈1|T ⊗ |0〉 〈0|E ⊗ |measure, 1〉 〈measure, 1|B

(4.2)

E now applies her attack operator U which acts on basis states as follows:

U |0, 0〉 = |U0〉 := |0, e0〉+ |1, e1〉

U |1, 0〉 = |U1〉 := |0, e2〉+ |1, e3〉

Where the |ei〉 are arbitrary states in HE which satisfy:

〈e0|e0〉+ 〈e1|e1〉 = 〈e2|e2〉+ 〈e3|e3〉 = 1

〈e2|e0〉+ 〈e3|e1〉 = 〈e0|e2〉+ 〈e1|e3〉 = 0

Let σ = UρU∗ be the state of the system after E’s attack. This state is:
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σ = pR

2
(|U0〉 〈U0|+ |U1〉 〈U1|+ |U0〉 〈U1|+ |U1〉 〈U0|)⊗ |reflect〉 〈reflect|B

+ pM

2
|U0〉 〈U0| ⊗ |measure, 0〉 〈measure, 0|B

+ pM

2
|U1〉 〈U1| ⊗ |measure, 1〉 〈measure, 1|B

(4.3)

The qubit is then returned to A who performs a Z or X basis measurement.

Assume first that B chose to measure and resend and that A choose to measure in

the Z basis. Let us also assume that A and B both agree to use this iteration to

check the security (thus B will divulge his measurement result). The probability that

these events occur is non-zero and it is clear, in this case, that if E wants to avoid

detection, she must set |e1〉 = |e2〉 = 0.

Now, assume that B reflected and A measures in the X basis. Let σreflect =

1
2
(|U0〉 〈U0|+ |U1〉 〈U1|+ |U0〉 〈U1|+ |U1〉 〈U0|) be the state of the system in this event.

Then, the probability that A measures |+〉 is:

p+ := tr(|+〉 〈+|σreflect |+〉 〈+|)

= 1
2
tr
(

1
2
(|+〉 (|e0〉 〈e0|+ |e3〉 〈e3|+ |e0〉 〈e3|+ |e3〉 〈e0|) 〈+|)

)
= 1

4
(〈e0|e0〉+ 〈e3|e3〉+ 〈e0|e3〉+ 〈e3|e0〉)

(4.4)

Of course, E avoids detection only if p+ = 1. Since 〈e0|e0〉 = 〈e3|e3〉 = 1, this is

the case only if 〈e0|e3〉 = 〈e3|e0〉 = 1. This, however, forces |e0〉 = |e3〉, a fact not

difficult to show: indeed, assume for contradiction, that we may write |e3〉 = |e0〉+ |x〉

for some non-zero |x〉. Then, 1 = 〈e0|e3〉 = 〈e0|e0〉 + 〈e0|x〉 ⇒ 〈e0|x〉 = 0. But,

1 = 〈e3|e3〉 = 〈e3|e0〉 + 〈e3|x〉 ⇒ 〈e3|x〉 = 0. So, 0 = 〈e3|x〉 = 〈e0|x〉 + 〈x|x〉 ⇒

〈x|x〉 = 0 ⇐⇒ |x〉 = 0 ⇐⇒ |e0〉 = |e3〉.
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Thus, at the conclusion of the first iteration of SQKD-1, in order to avoid de-

tection, E’s ancilla is in some state |e0〉 〈e0| regardless of A and B’s raw key bit.

Therefore, she learns nothing on the first iteration. However, since her ancilla is in

this known state, the same arguments may be applied on the second iteration. Thus,

by induction, the claim follows and the protocol is robust.

4.3.2 Regarding Raw Key Bias

Theorem 4.2.1 makes obvious a particular form of attack Eve may perform: namely

she can attempt to easily bias the raw key causing Alice and Bob to agree on a key

that is not uniform. While Eve may not learn anything about specific key bits in Alice

and Bob’s respective bit strings, it is still, in some manner, an information gain. Of

course, since the SQKD protocols we’ve analyzed in this paper are robust, the attack

described in this section is detectable by Alice and Bob (as a consequence of Theorem

4.2.2, Eve cannot attempt this attack as described in this section without running

the risk of being detected). Nonetheless, since A and B must accept some amount of

noise, it is interesting to consider exactly by how much Eve may bias the raw key.

Let us analyze the SQKD-1 protocol in [20], described in the previous section, to

determine exactly how much bias Eve may introduce into the info string based on

the total permitted error allowed by the honest parties A and B. Recall that Theorem

4.2.1 applies to this protocol. Now, consider the attack whereby Eve sends the state

|e〉 = α |0〉 + β |1〉 with α =
√

1/2 + b and β =
√

1/2− b for some b ∈ [0, 1/2] (the

following results are symmetric if b ∈ [−1/2, 0]). Eve does not attack the return line

which, in her absence, we assume is noiseless (it is usually the case, with quantum key

distribution, to assume any noise is caused by Eve [5]). Such an attack causes both

Alice and Bob to agree on a raw key that is drawn from the distribution whereby

Pr(0) = 1/2 + b. If Bob reflects this qubit, Alice will detect an error in the line (that
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is, she will measure |−〉) with probability: p(b) := 1/2−
√

1/4− b2 ≤ 1/2.

Recall that Alice permits a certain number of errors to register when reading the

reflected qubits. After Alice and Bob transmit N qubits as described in the protocol,

denote by R the number of qubits that were reflected (one would expect this to be

pRN , where pR is the probability Bob reflects). If P is the threshold value used by

Alice when determining whether to abort the protocol (that is, if Alice measures |−〉

P or more times, they abort), then Eve’s optimal attack in this case is to set b so that

p(b)R < P (since pR is public she can estimate R). Since N, pR, and P are public

knowledge, Eve can compute an optimal value for b. In particular: b <
√

P
R

(
1− P

R

)
(if P

R
≤ 1

2
; otherwise, b ≤ 1

2
).

If we let P = λR for some λ ≤ 1/2 (now P represents the fraction of reflected

qubits that are acceptable as errors), then we have: b <
√
λ(1− λ), The graph of

which is shown in Fig. 4.1.

Note that we may reword this statement. If Alice allows for a λ ≤ 1/2 proportion

of errors in the reflected qubits, Alice and Bob may expect to agree on a key not

drawn from uniform, but from the distribution whereby:

Pr(k = 0) =
1

2
+
√
λ(1− λ)− ε,

for some small ε > 0. For instance, if λ = 11% (roughly the acceptable error rate

of BB84 [31]), then, Alice and Bob can expect their info strings to be drawn from

a distribution whereby Pr(k = 0) = .812. Thus, by introducing only eleven percent

error, there is an attack Eve may employ which causes eighty percent of Alice and

Bob’s raw key to be zero.
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Figure 4.1: A graph of the function b =
√
λ(1− λ). This is the maximal value of

bias b which avoids the abortion of the protocol, provided A accepts a λ proportion
of errors in the reflected qubits in the SQKD-1 protocol.

4.3.3 Key-Rate Comparison with Three-State BB84

Theorem 4.2.1 leads us to an interesting observation: if Eve sends the state |+〉 to

Bob (that is, if she does not attack the first channel), then this is exactly equivalent

to the three state BB84 protocol described in [3]. This three-state BB84 has Bob

sending to Alice the states |0〉 , |1〉 , or |+〉 (we swap the roles of Alice and Bob in this

paper so as to be analogous with SQKD-1; ordinarily Alice transmits to Bob). The

Z basis states are used to distill their keys (along with some being used to estimate

the error of the channel in the Z basis) while the |+〉 state is used to estimate the

error of the channel in the X basis. If there is no noise in the first channel, this is

exactly how the SQKD-1 protocol [20] works: if Bob reflects, he is sending a |+〉,

otherwise he is sending a |0〉 or |1〉 randomly (based on his measurement result of |+〉

in the Z basis). The critical difference between the two is that Eve may attack on

the first communication line from Alice to Bob. If we assume that Eve is honest in
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the first attack stage (but not the second when the qubit is returning to Alice from

Bob), the key rate of this SQKD protocol is exactly that achieved by the three-state

BB84. However, we cannot assume Eve is honest.

Considering collective attacks, Theorem 4.2.1 implies that any attack by Eve on

the first quantum channel, connecting Alice to Bob, is equivalent to Eve simply

sending the biased state |e〉 =
√

1/2 + b |0〉+
√

1/2− b |1〉 for b ∈ [−1/2, 1/2]. Thus,

in this case, the SQKD-1 protocol becomes a “biased” three-state BB84 protocol.

The question we then ask is how does this bias affect the key rate (Equation 2.6). In

the following we determine, for any quantum operator that Eve may employ, a bound

on the difference between the effective key rates of these two protocols as a function

of the bias induced in the first channel. This is sufficient to get a bound on the key

rate of SQKD-1, thus proving its unconditional security for the first time.

Since we are considering collective attacks, it is clear that, at the conclusion of a

single iteration of the protocol (an iteration used to contribute to the raw key), B

and E’s system may be represented by the mixed state:

ρBE(b) =

(
1

2
+ b

)
|0〉 〈0|B ⊗ ρE,0 +

(
1

2
− b
)
|1〉 〈1|B ⊗ ρE,1, (4.5)

where b is the bias term introduced by E’s initial attack and ρE,i describes the state

of E’s ancilla in the event B’s measurement is |i〉. In particular, let U be the attack

operator used by E. We describe its action as follows:

U |0〉 → |0, e0〉TE + |1, e1〉TE (4.6)

U |1〉 → |0, e2〉TE + |1, e3〉TE .
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Then it is clear that:

ρE,0 = trTU |0〉 〈0|U∗ = |e0〉 〈e0|+ |e1〉 〈e1|

ρE,1 = trTU |1〉 〈1|U∗ = |e2〉 〈e2|+ |e3〉 〈e3| .

Note that, without loss of generality, we may assume dimHE = 4 where HE is E’s

private ancilla.

In the asymptotic scenario, this parameter b may be estimated by A and B. As

mentioned, if b = 0, this protocol is identical to the three state BB84 protocol [3],

and in this case, the security of the SQKD-1 is identical to that of the fully quantum

three state BB84. We now analyze the effect this bias term has on the key rate.

In the following, we will denote by r(b, U), the key rate of SQKD-1, assuming

E uses the attack with bias term b and unitary U . Furthermore, we will assume

the Z basis noise induced by U is symmetric: that is 〈e0|e0〉 = 〈e3|e3〉 = 1 − Q

and 〈e1|e1〉 = 〈e2|e2〉 = Q. This is a common assumption and since we will later

utilize previous key rate bounds for the three-state BB84 protocol, we make the same

assumption here. From this, r(b, U) = S(B|E)−H(B|A) where the quantum system

is described by Equation 4.5 substituting in the appropriate values of |ei〉 based on

the operator U ’s action on basis states.

We first prove some basic Lemmas:

Lemma 4.3.1. Let b be the bias term and ρBE(b) be as described in Equation 4.5.

Then:

S(ρBE(0))− S(ρBE(b)) = 1− h
(

1

2
+ b

)
− b∆, (4.7)

where ∆ = S(ρE,0) − S(ρE,1), and h is the binary entropy function. Note that

∆ ∈ [− log2 dimHE, log2 dimHE] = [−2, 2].
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Proof. Let {λji}4
i=1 be the eigenvalues of ρE,j (for j = 0, 1). Since ρE,i is positive

Hermitian they are real and non negative. Choosing a suitable basis (recall von

Neumann entropy is invariant to unitary changes in basis), we may write ρBE(b) as a

block diagonal matrix:

ρBE(b) =


(

1
2

+ b
)
ρE,0 0

0
(

1
2
− b
)
ρE,1

 ,

and so the eigenvalues of ρBE(b) are:
{(

1
2

+ b
)
λ0
i }4
i=1 ∪ {

(
1
2
− b
)
λ1
i

}4

i=1
. Then:

−S(ρBE(b)) =
4∑
i=1

(
1

2
+ b

)
λ0
i log

(
1

2
+ b

)
λ0
i +

4∑
i=1

(
1

2
− b
)
λ1
i log

(
1

2
− b
)
λ1
i

=

(
1

2
+ b

)[ 4∑
i=1

λ0
i log λ0

i + log

(
1

2
+ b

) 4∑
i=1

λ0
i

]

+

(
1

2
− b
)[ 4∑

i=1

λ1
i log λ1

i + log

(
1

2
− b
) 4∑

i=1

λ1
i

]

=
1

2

[
4∑
i=1

λ0
i log λ0

i +
4∑
i=1

λ1
i log λ1

i

]
− h

(
1

2
+ b

)

− b

[
4∑
i=1

λ0
i log λ0

i +
4∑
i=1

λ1
i log λ1

i

]

=
1

2

∑
i,j

λji log λji − h
(

1

2
+ b

)
− b (S (ρE,0)− S (ρE,1)) .

From this, it is clear that:
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S(ρBE(0))− S(ρBE(b)) = 1− h
(

1

2
+ b

)
− b (S(ρE,0)− S(ρE,1))

We now show a similar bound for the classical joint entropy H(A,B):

Lemma 4.3.2. Let H(A,Bb) be the joint entropy of A and B’s system in the event

E uses bias b when attacking SQKD-1. Then:

H(A,B0)−H(A,Bb) = 1− h
(

1

2
+ b

)
. (4.8)

Proof. Denote by pb(x, y) the probability that B’s raw key bit is x and A’s key bit

is y given that E used a bias term of b. Since we are assuming a symmetric attack,

these values are:

pb(0, 0) =

(
1

2
+ b

)
(1−Q) (4.9)

pb(1, 1) =

(
1

2
− b
)

(1−Q)

pb(0, 1) =

(
1

2
+ b

)
Q

pb(1, 0) =

(
1

2
− b
)
Q.

Then:
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−H(A,Bb) =

(
1

2
+ b

)
(1−Q) log

(
1

2
+ b

)
(1−Q)

+

(
1

2
− b
)

(1−Q) log

(
1

2
− b
)

(1−Q)

+

(
1

2
+ b

)
Q log

(
1

2
+ b

)
Q

+

(
1

2
− b
)
Q log

(
1

2
− b
)
Q

= (1−Q) log(1−Q) +Q logQ

+

(
1

2
+ b

)
log

(
1

2
+ b

)
+

(
1

2
− b
)

log

(
1

2
− b
)

= −h(Q)− h
(

1

2
+ b

)
.

From this, the claim follows immediately.

We may now prove our bound on the key rate:

Theorem 4.3.2. Let (b, U) be an attack against protocol SQKD-1 and denote by

r(b, U) the resulting key rate. Then:

|r(0, U)− r(b, U)| ≤ 2h(|b|) + |b| log 3 + |b∆| (4.10)

≤ 2h(|b|) + (2 + log 3)|b|. (4.11)

Proof. By definition, r(b, U) = S(ρBE(b)) − S(ρE(b)) − H(A,Bb) + H(Ab), where

H(Ab) is the classical entropy of A’s system in the event E uses bias b in her initial
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attack. From Lemmas 4.3.1, 4.3.2, it follows that:

|r(0, U)− r(b, U)| = |S(ρBE(0))− S(ρBE(b)) + S(ρE(b))− S(ρE(0))

− (H(A,B0)−H(A,Bb)) +H(A0)−H(Ab)|

≤ |b∆|+ |S(ρE(0))− S(ρE(b))|+ |H(A0)−H(Ab)|.

We must now bound |S(ρE(0))−S(ρE(b))|. To do so, we will employ the Fannes-

Audenaert inequality [51] which states that, for any two density matrices σ1 and σ2

both of dimension D, it holds that:

|S(σ1)− S(σ2)| ≤ T log(D − 1) + h(T ),

where T := 1
2
||σ1 − σ2||. Observe that ρE(b) = trBρBE(b) = 1

2
ρE,0 + 1

2
ρE,1 + b(ρE,0 −

ρE,1). So:

T =
1

2
||ρE(0)− ρE(b)|| = 1

2
||b(ρE,1 − ρE,0)||

≤ |b|
2

(||ρE,1||+ ||ρE,0||) = |b|.

The above inequality follows from the triangle inequality; the final equality follows

from the fact that, for any positive-semidefinite matrix A, it holds that ||A|| = trA.

A similar technique may be used to show that |H(A0) − H(Ab)| ≤ h(|b|) (even

though these are classical, the Fannes-Audenaert inequality may be used by repre-

senting the classical system as a quantum one via a diagonal matrix). Indeed, let

pb(y) be the probability that A’s raw key bit is y given a bias term of b was used.
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From Equation 4.9, it follows that these values are:

pb(0) =

(
1

2
+ b

)
(1−Q) +

(
1

2
− b
)
Q =

1

2
+ b(1− 2Q)

pb(1) =

(
1

2
+ b

)
Q+

(
1

2
− b
)

(1−Q) =
1

2
− b(1− 2Q).

Then, ρA(b) = pb(0) |0〉 〈0|+pb(1) |1〉 〈1| and S(ρA(b)) = H(Ab). Thus we may use

the Fannes-Audenaert inequality again to bound |H(A0)−H(Ab)| ≤ T2 log 1+h(T2) =

h(T2), where:

T2 =
1

2
||ρA(0)− ρA(b)|| = 1

2
(|p0(0)− pb(0)|+ |p0(1)− pb(1)|)

= |b| · |1− 2Q| ≤ |b|.

The theorem’s statement now follows.

We have thus computed a function f(b) = 2h(|b|)+(2+log 3)|b| such that f(0) = 0

and:

|r(0, U)− r(b, U)| ≤ f(b)⇒ r(b, U) ≥ r(0, U)− f(b).

As mentioned, r(0, U) is the key rate of the three state BB84 protocol. What we

really want, however, is to know the key rate of the protocol, given only the bias, and

the Z and X basis error rates (parameters that can be estimated). That is, we want

to compute the following:

rb = inf
U∈Γb(Q,QX)

r(b, U),

where Q is the observed Z basis error, QX is the observed X basis error (the prob-

ability that A measures |−〉 if B reflected - this depends on the bias term b and the

attack operator U), and Γb(Q,QX) is the set of all unitary operators which induce

the specified error rate. We may use the results in this section to compute a lower
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bound on this value.

In more detail, let Γb(Q,QX) be the set of all unitary operators U such that

| 〈i|U |1− i〉 |2 = Q and | 〈−|U |e〉 |2 = QX . From our work above, we have:

rb = inf
U∈Γb(Q,QX)

r(b, U) ≥ inf
U∈Γb(Q,QX)

r(0, U)− f(b).

As mentioned earlier, r(0, U) is the key rate of the three-state BB84 protocol if

attack operator U is used. It was shown in [3] that:

inf
U∈Γ0(Q, eQX)

r(0, U) ≥ g(Q, Q̃X) = 1− h(Q)− h(ep), (4.12)

where Q denotes the observed Z basis error (as described above), Q̃X = | 〈−|U |+〉 |2 is

the error in the X basis (without bias - three state BB84 is a uni-directional protocol),

and:

ep = min

(
1

2
, Q̃X + 2Q+

√
QQ̃X

)
.

However, when a user is working with SQKD-1, they cannot directly observe Q̃X

- they can only observe QX which is the error induced by E’s unitary attack operator

and her initial bias. Thus, to use the above equation to bound the key rate of this

SQKD protocol, we must find a bound on Q̃X given only Q, QX , and b.

Pick an arbitrary unitary operator U . Let α =
√

1/2 + b, β =
√

1/2− b, and

|e〉 = α |0〉+ β |1〉. From Equation 4.6, we may compute the values QX and Q̃X :

QX = | 〈−|U |e〉 |2 =
1

2
−Re

(
α2 〈e0|e1〉+ αβ 〈e0|e3〉+ αβ 〈e1|e2〉+ β2 〈e2|e3〉

)
Q̃X = | 〈−|U |+〉 |2 =

1

2
−Re

(
1

2
〈e0|e1〉+

1

2
〈e0|e3〉+

1

2
〈e1|e2〉+

1

2
〈e2|e3〉

)
.

Note that we have used the fact that 〈e0|e2〉 + 〈e1|e3〉 = 0 which is a consequence of
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U being unitary.

From this, we have:

|Q̃X −QX | =
∣∣∣∣(α2 − 1

2

)
〈e0|e1〉+

(
β2 − 1

2

)
〈e2|e3〉

+

(
αβ − 1

2

)
(〈e0|e3〉+ 〈e1|e2〉)

∣∣∣∣
≤ |b| · | 〈e0|e1〉 |+ |b| · | 〈e2|e3〉

+

∣∣∣∣∣
√

1

4
− b2 − 1

2

∣∣∣∣∣ (| 〈e0|e3〉 |+ | 〈e1|e2〉 |)

≤ |b|
√
Q(1−Q) + |b|

√
Q(1−Q) +

∣∣∣∣∣
√

1

4
− b2 − 1

2

∣∣∣∣∣ (1−Q+Q),

where the last inequality follows from the Cauchy-Schwarz inequality. Observe that,

since Q ∈ [0, 1], it holds that
√
Q(1−Q) ≤ 1/2. Also observe that |

√
1/4− b2 −

1/2| ≤ |b|. Thus:

|Q̃X −QX | ≤ 2|b|

and so:

Q̃X ∈ [QX − 2|b|, QX + 2|b|].

Let Γ̃b(Q,QX) =
⋃
δ∈[−2|b|,2|b|] Γ0(Q,QX +δ). It is clear, from the above discussion,
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that Γb(Q,QX) ⊂ Γ̃b(Q,QX). Thus we conclude:

rb = inf
U∈Γb(Q,QX)

r(b, U) ≥ inf
U∈Γb(Q,QX)

r(0, U)− f(b) (4.13)

≥ inf
U∈eΓb(Q,QX)

r(0, U)− f(b)

≥ inf
δ∈[−2|b|,2|b|]

g(Q,QX + δ)− f(b),

where g(Q,QX) is defined in Equation 4.12. This provides us with a lower bound on

the key rate of SQKD-1 given only the observed parameters: Q, QX , and b.

Note that, while we only considered a collective attack, since Alice and Bob may

permute their key bits in both protocols, without otherwise affecting the protocols,

this implies the same result holds in the general attack scenario as shown in [17, 28].
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Chapter 5

Security Analysis of a New Single State Protocol

In this chapter, we present a new single-state SQKD protocol along with its security

analysis. This protocol is interesting in that it is the first which allows reflections

(and, thus, X basis states) to contribute to the raw key, despite the fact that B is

unable to directly work with such states (that is, he cannot prepare or measure in the

X basis). Our protocol generates a raw key, not by using actual measurement results,

but by using B’s choice to reflect or measure and resend. In particular, if he chooses

to reflect A’s qubit, this will count as a raw key bit of zero; otherwise, if he measures

and resends, this will be a key bit of one. While the SQKD protocols described in

[13, 14] may be considered semi-quantum versions of the BB84 protocol, the protocol

we discuss here may be considered the semi-quantum version of SARG04 [4] and, in

fact, we took some inspiration from this QKD protocol (though, interestingly, even

though SARG04 was our inspiration, we will later show a similarity to the B92 [2]

QKD protocol). The work in this chapter is derived from a paper we published in

[19].

5.1 The Protocol

Each iteration of our protocol runs as follows:

1. A sends to B the state |+〉.

2. B chooses a random bit kB which will be his candidate raw key bit for this

iteration. If kB = 0, then B will reflect the incoming qubit; otherwise he will

measure and resend. Finally, he will set an internal register called acceptB in
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the following manner:

• If kB = 0 (that is, he reflected), then with probability 1/2 he will set

acceptB = TRUE; otherwise acceptB = FALSE.

• If kB = 1 (B measured and resent), then he sets acceptB = TRUE only if

his measurement produced outcome |0〉

The value of acceptB is kept private for now.

3. When a qubit returns to A, she will choose randomly to measure in the Z or

X basis. She will then set two internal registers, acceptA and kA (her raw key

bit), in the following manner:

• If she choose to measure in the Z basis and the result was |1〉, she sets

acceptA = TRUE and kA = 0

• If, instead, she choose the X basis and the measurement result was |−〉,

she sets acceptA = TRUE and kA = 1.

• For all other cases, she simply sets acceptA = FALSE; the value of kA is

not important in this case.

4. Next, A and B will broadcast their values of acceptA and acceptB using the

classical authenticated channel. If both values are TRUE, then they will use kA

and kB as their raw key bit for this iteration.

5. If either A or B’s value is FALSE, this iteration can be used to verify the security

of the channel. This requires further communication from B concerning his

measurement result (if any) and his choice of kB. Note that A and B will also

perform this security verification on randomly chose iterations when acceptA

= acceptB = TRUE.
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The above procedure repeats N times and, as is usual, A and B will then run an

error correcting and a privacy amplification protocol.

One of the disadvantages to this protocol is the loss of efficiency. Unlike SQKD-1

considered last chapter (the protocol of Zou et al. [20]), where the probability of

B measuring and resending, and the probability of A choosing to measure in the Z

basis, may be set close to one, here these probabilities must remain at 1/2. In the

absence of noise, one can expect only 1/8 of the sent qubits to contribute to the raw

key (unlike in SQKD-1, where in the absence of noise, one can expect, asymptotically,

all qubits to contribute to the raw key). Interestingly, this is the same disadvantage

SARG04 has when compared with BB84 [5]. We suspect our protocol can be made

immune to multi-photon attacks (which was also the primary advantage to SARG04)

and are currently investigating this possibility - thus providing a possible advantage

to this protocol offsetting the obvious efficiency issue.

5.2 Proof of Robustness

Theorem 5.2.1. The SQKD protocol, as described above, is correct. That is to say,

in the absence of noise, both parties will agree on the same raw key.

Proof. Let us consider a single iteration of our protocol. After B’s operation, the

system, assuming no noise, may be described by the mixed state:

ρ = 1
4
|+〉 〈+| ⊗ |a, 0〉 〈a, 0|B + 1

4
|+〉 〈+| ⊗ |r〉 〈r|B

+ 1
2

(
1
2
|0〉 〈0| ⊗ |a, 1〉 〈a, 1|B + 1

2
|1〉 〈1| ⊗ |r〉 〈r|B

)
.

(5.1)

Note that here, we have provided B with a quantum register (used to model his

classical memory) spanned by states {|a, 0〉 , |a, 1〉 , |r〉} which denotes his choice to

“accept” with a raw key bit of zero, accept with a raw key bit of one, or reject.
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When the qubit returns to A, she will choose to measure either in the Z or the

X basis (each chosen with probability 1/2). Providing her with a register similar to

that of B’s, the system, after A’s operation, is in the state:

σ =
1

2
MX(ρ) +

1

2
MZ(ρ), (5.2)

where:

MX(ρ) = 1
4
|+〉 〈+| ⊗ |r〉 〈r|A ⊗ |a, 0〉 〈a, 0|B + 1

4
|+〉 〈+| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B

+ 1
8
|+〉 〈+| ⊗ |r〉 〈r|A ⊗ |a, 1〉 〈a, 1|B

+ 1
8
|−〉 〈−| ⊗ |a, 1〉 〈a, 1|A ⊗ |a, 1〉 〈a, 1|B

+ 1
8
|+〉 〈+| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B

+ 1
8
|−〉 〈−| ⊗ |a, 1〉 〈a, 1|A ⊗ |r〉 〈r|B

(5.3)

and:

MZ(ρ) = 1
8
(|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |a, 0〉 〈a, 0|B + |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |a, 0〉 〈a, 0|B)

+ 1
8
(|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B + |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |r〉 〈r|B)

+ 1
4
(|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |a, 1〉 〈a, 1|B + |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |r〉 〈r|B).

(5.4)

It is not difficult to see that, if both A and B “accept” (they set their accept

flags to TRUE), they will agree on the same raw key bit.

We will use a similar technique as used in the proof of Theorem 4.3.1 to prove the

robustness of our protocol:

Theorem 5.2.2. Our protocol, as described above, is completely robust.

Proof. Let us consider the first iteration of the protocol. As with SQKD-1, the
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probability of performing a security check of the quantum channel, in either the Z or

X basis, on this first iteration is non-zero. Using the same arguments as in the proof

of Theorem 4.3.1, we can show that, after this first iteration, E’s private ancilla is in

some state |e0〉E, which is known to her, and which is independent of A and B’s raw

key bit.

The only additional element that must be shown is that the public discussion

performed by A and B over the authenticated classical channel, does not leak infor-

mation to E. However, this is not difficult to see. Only a single bit of information

is sent by each party: namely whether A and B accept the iteration. If one of A or

B reject, that particular iteration is not used to contribute to the raw key and thus

no information leaks. We must, therefore, only consider the case when both accept.

But this happens only in the case of two events:

• If B chose to reflect and accept, and if A chose to measure in the Z basis

resulting in measurement outcome |1〉. In this case, A and B agree on a raw

key bit of zero.

• If B chose to measure and resend and if his measurement result was |0〉; also if

A chose to perform an X basis measurement resulting in outcome |−〉. In this

case they both agree on a raw key bit of one.

It is not difficult to show that the probability of either event occurring is 1/16.

Therefore, when E learns that both parties accepted the iteration, the raw key bit

is equally likely to have been a zero or one. Furthermore, E may incorporate the

information of A and B’s acceptance into her private ancilla; but even then, she is

still fully aware of its state and so Theorems 4.2.1 and Theorems 4.2.2 apply again

on the second iteration. Thus, by induction, the protocol is robust.
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5.3 Key Bias Attack

Since this is a single state protocol, Theorem 4.2.1 applies. Thus, any general col-

lective attack, consisting of two unitary operators, is equivalent to an attack (b, U)

where b is a bias parameter and U is a unitary operator. In prior SQKD protocols,

where any measurement result was used directly as the raw key bit for a particular

iteration, it was obvious how this b value biases the raw key. One might think that

our new protocol would be immune to a bias attack due to the fact that Bob chooses

himself how to set his raw key bit (reflecting causes a zero, measuring and resending

a one), unlike in prior SQKD protocols where the measurement result itself is used

for this bit string. However, Eve may still bias the key by causing Alice and Bob to

accept more often on those iterations whereby Bob reflected (or measured) and to

reject more often any other iteration, as we now show.

Note that we are only interested in the case when both Alice and Bob accept.

Assume that Eve sends the state |e〉 = α |0〉 + β |1〉 with α =
√

1/2 + b and β =√
1/2− b. Furthermore, assume she does not attack the qubit on its return from

Bob to Alice (as we did in Chapter 4.3.2). Then, the system’s state, adopting similar

notation for Bob’s register to that used in the proof of Theorem 5.2.1, when Alice

receives a qubit from Bob is (assuming Bob has accepted):

ρaccept =
1

2b+ 2
|e〉 〈e| ⊗ |a, 0〉 〈a, 0|B +

2b+ 1

2b+ 2
|0〉 〈0| ⊗ |a, 1〉 〈a, 1|B . (5.5)

This state was computed by first modifying Equation 5.1 (replacing |+〉 with |e〉),

projecting to a state whereby Bob accepts, then dividing by the trace of the resulting

density matrix.
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Recall that Alice accepts a raw key bit of 0 only if she chooses to measure in the

Z basis and her measurement outcome is |1〉; and that she accepts a raw key bit of 1

only if she chooses to measure in the X basis and the result is |−〉. The state of the

system then is, again assuming Alice accepts:

σ = 1
4p(b+1)

(β2 |1〉 〈1|T ⊗ |0, 0〉 〈0, 0|AB + 1
2
(α− β)2 |−〉 〈−|T ⊗ |1, 0〉 〈1, 0|AB

+ α2 |−〉 〈−|T ⊗ |1, 1〉 〈1, 1|AB),

(5.6)

where:

p =
1

4b+ 4

(
β2 +

1

2
(α− β)2 + α2

)
=

1

4b+ 4

(
3

2
− αβ

)
.

Denote by p(x, y) the probability Alice’s bit is x while Bob’s bit is y given that

both A and B accepted. These values, are now easy to calculate as:

p(0, 0) = β2/ (3/2− αβ)

p(1, 1) = α2/ (3/2− αβ)

p(0, 1) = 0

p(1, 0) = (α− β)2/ (3− 2αβ)

The values p(0, 0) and p(1, 1) are graphed in Fig. 5.1. Clearly, the bias term has

a different effect on this protocol; in fact, this bias term can actually induce an error

in A and B’s raw key. We leave as an open question of some interest, as to whether

or not it is possible to design a single state protocol which is either immune to this

bias attack (which seems very unlikely), or which is less susceptible to it.
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Figure 5.1: A graph of the distribution of the raw key if bias b (x-axis) is introduced in
our new protocol. Top solid line plots p(0, 0) (the probability that Alice and Bob agree
on 0), bottom solid line plots p(1, 1). The two dashed lines are the same quantities
when Zou et al.’s protocol (see Chapter 4.3.1) is considered: namely 1/2± b.
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5.4 Key Rate in the Asymptotic Scenario

We now turn our attention to bounding the maximum tolerated error rate of our new

SQKD protocol. In particular, we will show an explicit attack that Eve may employ

which, by introducing an error rate of 5.6% (that is, at most 5.6% of the qubits are

flipped: |i〉 → |1− i〉 and |+〉 → |−〉), causes the key rate r = S(A|E)−H(A|B) to

become negative.

We will again consider a collective attack. From Theorem 4.2.1, we know the most

general of these attacks is equivalent to Eve first sending the state |e〉 = α |0〉+ β |1〉

for α, β ∈ R. Let α =
√

1/2 + b and β =
√

1/2− b for some b ∈ [−1/2, 1/2]. Assume

that she sends such a state to Bob who then will either reflect or measure and resend.

We will use a similar method as in the proof of Theorem 5.2.1, however since we

are only interested in the state whereby both Alice and Bob accept (if one of them

rejects, the iteration is ignored), we might as well assume that Bob’s register reads

|a〉 (accept). Thus, the state of the system when Eve receives the return qubit is,

from Equation 5.5:

ρaccept =
1

2b+ 2
|e〉 〈e| ⊗ |a, 0〉 〈a, 0|B +

2b+ 1

2b+ 2
|0〉 〈0| ⊗ |a, 1〉 〈a, 1|B .

Eve will now apply a unitary attack operator U , acting on the travel qubit and

her own ancilla (prepared in some known state |χ〉). This operator acts as follows:

U |0, χ〉 = |U0〉 := |0, e0〉+ |1, e1〉

U |1, χ〉 = |U1〉 := |0, e2〉+ |1, e3〉

U |e, χ〉 = |Ue〉 := |0, e+〉+ |1, e−〉

Where |ei〉 are states in Eve’s ancilla satisfying:
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〈e0|e0〉+ 〈e1|e1〉 = 〈e2|e2〉+ 〈e3|e3〉 = 1

〈e2|e0〉+ 〈e3|e1〉 = 〈e0|e2〉+ 〈e1|e3〉 = 0

|e+〉 = α |e0〉+ β |e2〉

|e−〉 = α |e1〉+ β |e3〉

(5.7)

The first two conditions follow from unitarity, the last two from linearity. After

applying this operator, the system’s state is:

σaccept =
1

2b+ 2
|Ue〉 〈Ue| ⊗ |0〉 〈0|B +

2b+ 1

2b+ 2
|U0〉 〈U0| ⊗ |1〉 〈1|B .

The travel qubit is then forwarded to Alice who then measures in the X (accepting

a key bit of 1 only if she measures a |−〉) or Z basis (accepting as a 0 only if she

measures a |1〉). After this operation, and assuming she accepts, the joint system is

in the state:

σATBE =
1

2p
(σ− ⊗ |1〉 〈1|A + σ1 ⊗ |0〉 〈0|A) , (5.8)

where, defining P (|ψ〉) = |ψ〉 〈ψ|, we have:
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σ− = 1
2b+2
· 1

2
P (|−〉 (|e+〉 − |e−〉))⊗ |0〉 〈0|B

+ 2b+1
2b+2
· 1

2
P (|−〉 (|e0〉 − |e1〉))⊗ |1〉 〈1|B

σ1 = 1
2b+2
|1, e−〉 〈1, e−| ⊗ |0〉 〈0|B + 2b+1

2b+2
|1, e1〉 〈1, e1| ⊗ |1〉 〈1|B

p = 1
2

(tr(σ−) + tr(σ1))

= 1
4b+4

(1
2
(〈e+|e+〉+ 〈e−|e−〉 − 〈e+|e−〉 − 〈e−|e+〉)

+ 2b+1
2

(〈e0|e0〉+ 〈e1|e1〉 − 〈e0|e1〉 − 〈e1|e0〉)

+ 〈e−|e−〉+ (2b+ 1) 〈e1|e1〉).

We wish to compute H(A|B) from σABE = trT (σATBE). Define p(x, y) to be the

probability that A’s raw key bit is x ∈ {0, 1} and that B’s bit is y ∈ {0, 1}. From

Equation 5.8, this is easy to compute:

p(0, 0) = 1
2p(2b+2)

〈e−|e−〉

p(1, 1) = 2b+1
2p(4b+4)

(〈e0|e0〉+ 〈e1|e1〉 − 〈e0|e1〉 − 〈e1|e0〉)

p(0, 1) = 2b+1
2p(2b+2)

〈e1|e1〉

p(1, 0) = 1
2p(4b+4)

(〈e+|e+〉+ 〈e−|e−〉 − 〈e+|e−〉+ 〈e−|e+〉).

Also define p(x) to be the probability that B’s raw key bit is x. These values are:

p(0) = 1
2p(4b+4)

(〈e+|e+〉+ 〈e−|e−〉 − 〈e+|e−〉 − 〈e−|e+〉) + 1
2p(2b+2)

〈e−|e−〉

p(1) = 2b+1
2p(4b+4)

(〈e0|e0〉+ 〈e1|e1〉 − 〈e0|e1〉 − 〈e1|e0〉) + 2b+1
2p(2b+2)

〈e1|e1〉 .

Thus:
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H(A|B) = p(0, 0) log2

(
p(0)
p(0,0)

)
+ p(1, 1) log2

(
p(1)
p(1,1)

)

+ p(0, 1) log2

(
p(1)
p(0,1)

)
+ p(1, 0) log2

(
p(0)
p(1,0)

) (5.9)

Up until this point we have been precise; we now however, for the remainder of this

section, turn to numerical computations. In particular, the following attack operator

was found using the search algorithm we designed in [21].

By the Stinespring Dilation Theorem [52], we can bound the dimension of HE

by four. Thus, fixing a basis for Eve’s ancilla, we may write each state |ei〉, for

i ∈ {0, 1, 2, 3} as a dimension four vector. Now, consider the following attack operator

U (note that the following numbers are approximations subject to precision error,

however, since our goal in this section is to get a handle on this protocol’s security

properties, and not to compute a precise bound, this approximation suffices for our

purposes):

|e0〉 =



−0.4821 + 0.3811i

−0.4188− 0.4250i

−0.3895 + 0.2005i

0.0019 + 0.1449i


|e1〉 =



0.0801− 0.0439i

−0.1489− 0.1284i

−0.0108− 0.0414i

−0.0664 + 0.0089i



|e2〉 =



0.0005− 0.0438i

−0.0534− 0.0268i

0.0025− 0.0897i

0.1213− 0.1569i


|e3〉 =



−0.5735 + 0.3219i

−0.4934− 0.2124i

−0.2188− 0.1283i

0.3248− 0.2371i



(5.10)

One may easily verify that this satisfies the requirements of Equation 5.7 to within
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a small precision error:

〈e0|e0〉+ 〈e1|e1〉 = 1.000

〈e2|e2〉+ 〈e3|e3〉 = 1.000

| 〈e0|e2〉+ 〈e1|e3〉 | < 10−5

Furthermore, assume for this attack, that Eve sets b = 0.04. Let QZ,i be the

probability that Bob measures a |i〉 and Alice measures a |1− i〉. Clearly we have:

QZ,0 = 〈e1|e1〉 = 0.053

QZ,1 = 〈e2|e2〉 = 0.0528

Thus we see this attack operator introduces an error rate of 5.3% in the Z basis.

The error in the X basis (denoted QX) may be computed as:

QX = tr(|−〉 〈−|Ue〉 〈Ue|−〉 〈−|) = .056

To compute S(σAE), where σAE = trTB(σATBE), we first compute the eight eigen-

values of this density matrix. These are found to be: {0.4607, 0.0455, 0.4551, 0.0385,

0, 0, 0, 0}. Thus: S(σAE) = 1.4161. We trace out A and compute the eigenvalues of

the resulting density matrix σE; these are: {0.7760, 0.1788, 0.0443, 0.0009}. Thus,

S(σE) = 0.9359 resulting in: S(A|E) = 0.4801.

Finally, using Equation 5.9, we compute H(A|B) = 0.4863. We may then conclude

that r = S(A|E) − H(A|B) = −0.0063. We have thus shown, using numerical

methods, an attack which introduces only 5.6% error (in the X basis - only 5.3%

error in the Z basis) yet causes a negative key rate. This bound is of course not tight,

but does demonstrate an upper-bound on the tolerated noise level of our protocol.

Therefore, it shows that Alice should set her security threshold parameter to such a
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value such that she aborts the protocol if she detects such an error rate. This is an

upper-bound; in the next section, we will compute a lower bound.

5.5 Effects of Bias on the Key Rate

In this section, we adapt the technique used in Chapter 4.3.3, and apply it to our

new protocol. In particular, given an attack operator U , we will compute a bound on

the difference between key rate of our protocol when no bias is used, and when bias

b ∈ [−1/2, 1/2] is used. We will also show that, in the event b = 0, our protocol’s

key rate is equal to that of B92. Thus, the result of this chapter is a lower-bound on

the key rate of our new SQKD protocol as a function of the key rate of B92, and the

bias. This proves the unconditional security of our new SQKD protocol.

To simplify the analysis, we will first modify the protocol slightly. Instead of B

randomly rejecting 1/2 of those iterations he reflected, he will reject 1/2− b of them,

where b is E’s initial bias (this is something B can estimate, given enough iterations

of the protocol). To do so, of course, we must assume that B makes the decision to

accept or reject after the protocol has completed. This modification symmetrizes B’s

key (before A’s acceptance).

Let (b, U) be a restricted collective attack as described in Chapter 4. In this

case, on each iteration the qubit arriving at B’s system is: |e〉T =
√

1/2 + b |0〉 +√
1/2− b |1〉. Conditioning on the event that B accepts the iteration, the state of

the system is:

ρ =
1

2
|0〉 〈0|B ⊗A (U |e〉 〈e|U∗) +

1

2
|1〉 〈1|B ⊗A (U |0〉 〈0|U∗) , (5.11)

where A is A’s operation (namely, her accepting if she measures |−〉 or |1〉 and setting

her raw key bit accordingly; otherwise she rejects). Before describing the outcome of
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A, let us change basis and write |e〉 = α |+〉+ β |−〉, where:

α =
1√
2

(√
1

2
+ b+

√
1

2
− b

)

β =
1√
2

(√
1

2
+ b−

√
1

2
− b

)
.

Observe that:

α2 =
1

2
+

√
1

4
− b2

β2 =
1

2
−
√

1

4
− b2

αβ = b.

Let U ’s action (recall U is E’s attack operator) be described as follows:

U |0〉 = |0, e0〉+ |1, e1〉

U |+〉 = |+, f0〉+ |1, f1〉

U |−〉 = |+, f2〉+ |−, f3〉 .

Thus, conditioning on the event that both A and B accept, Equation 5.11 becomes:

ρABE(b) =
1

2Nb

[
|00〉 〈00|BA ⊗

(
1

2
P (α |g0〉+ β |g1〉)

)
(5.12)

+ |01〉 〈01|BA ⊗ P (α |f1〉+ β |f3〉)

+ |10〉 〈10|BA ⊗ (|e1〉 〈e1|)

+ |11〉 〈11|BA ⊗
(

1

2
P (|e0〉 − |e1〉)

)]
,

where P (z) = zz∗, |g0〉 = |f0〉 − |f1〉, |g1〉 = |f2〉 − |f3〉, and Nb is the normalization
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term:

Nb =
1

2

(
α2

2
〈g0|g0〉+

β2

2
〈g1|g1〉+ bRe 〈g0|g1〉+ α2 〈f1|f1〉+ β2 〈f3|f3〉

+ 2bRe 〈f1|f3〉+ 〈e1|e1〉+
1

2
(1− 2Re 〈e0|e1〉)

)
.

Note that Nb is exactly the probability that both A and B accept any particular

iteration. We will assume throughout the rest of this section that Nb > 0. Otherwise,

if Nb = 0, then no key is distilled and r(b, U) = 0.

Before continuing, we will require a small lemma, which is easily proven:

Lemma 5.5.1. Let σ = |a〉 〈b|+|b〉 〈a|, where |a〉 , |b〉 ∈ H, for some finite dimensional

Hilbert space H (neither states are necessarily normalized nor orthogonal). Then:

||σ|| ≤ 4
√
〈a|a〉 〈b|b〉.

Proof. Observe that σ is Hermitian, thus to compute ||σ||, we must simply compute

its eigenvalues. Write |a〉 = xeiθ |g〉 and |b〉 = yeiψ |g〉 + z |ζ〉 where 〈g|g〉 = 1,

〈g|ζ〉 = 0, x, y ∈ R≥0, and z ∈ C. Note that this implies:

x =
√
〈a|a〉 (5.13)√

y2 + |z|2 =
√
〈b|b〉.

In this {|g〉 , |ζ〉} basis, we may write σ as follows:

σ =

 2xy cos(θ − ψ) xeiθz∗

xe−iθz 0

 ,
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in which case the eigenvalues are simply:

λ± = xy cos(θ − ψ)±
√
x2y2 cos2(θ − ψ) + x2|z2|.

Now:

||σ|| = |λ+|+ |λ−| ≤ 2xy| cos(θ − ψ)|+ 2
√
x2y2 cos2(θ − ψ) + x2|z2|

≤ 2xy + 2
√
x2y2 + x2|z|2 = 2xy + 2

√
x2(y2 + |z|2)

≤ 2
√
〈a|a〉 〈b|b〉+ 2

√
〈a|a〉 〈b|b〉

= 4
√
〈a|a〉 〈b|b〉.

The last inequality follows from Equation 5.13 and the simple observation that,

since y ≥ 0, we have: y =
√
y2 ≤

√
y2 + |z|2 =

√
〈b|b〉.

We may now continue with our bound on the effects of E’s bias attack on our new

protocol. Let r(b, U) be the key rate of this protocol, assuming E uses the attack

(b, U). That is,

r(b, U) = S(B|E)− S(B|A) = S(ρBE(b))− S(ρE(b))− S(ρBA(b)) + S(ρA(b)).

(Note that we have used S(B|A) above instead of H(B|A); however since the system

is classical, the two entropies are equal.)

Then, by the triangle inequality, we have:

|r(0, U)− r(b, U)| ≤ |S(ρBE(0))− S(ρBE(b))|+ |S(ρE(0))− S(ρE(b))| (5.14)

+ |S(ρAB(0))− S(ρAB(b))|+ |S(ρA(0))− S(ρA(b))|.
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Unfortunately, there is less structure in this state to take advantage of, as com-

pared to the protocol considered in Chapter 4. Due to this, we are forced to bound

each term separately using the Fannes-Audenaert inequality [51]. Recall that this

inequality states, for any finite dimensional density operators ρ and σ (both of the

same dimension D), it holds that:

|S(ρ)− S(σ)| ≤ T log(D − 1) + h(T ),

where T = 1
2
||ρ − σ||. Thus, our primary goal is to compute bounds on these trace

distances.

We first compute a bound on |S(ρBE(0))− S(ρBE(b))|. Let σ = ρBE(0)− ρBE(b).

This density operator is:

σ =
1

2
|0〉 〈0|B ⊗

[
1

2

(
1

N0

− α2

Nb

)
|g0〉 〈g0| −

β2

2Nb

|g1〉 〈g1| −
b

2Nb

(|g0〉 〈g1|+ |g1〉 〈g0|)

+

(
1

N0

− α2

Nb

)
|f1〉 〈f1| −

β2

Nb

|f3〉 〈f3| −
b

Nb

(|f1〉 〈f3|+ |f3〉 〈f1|)
]

+
1

2
|1〉 〈1|B ⊗

[(
1

N0

− 1

Nb

)
|e1〉 〈e1|+

1

2

(
1

N0

− 1

Nb

)
P (|e0〉 − |e1〉)

]
.

Let T1 = 1
2
||σ||. Using the triangle inequality and the fact that || |i〉 〈i|⊗ρ|| = ||ρ||

for any density operator ρ, we have:

T1 ≤
1

8

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣ · || |g0〉 〈g0| ||+
β2

8Nb

|| |g1〉 〈g1| ||+
|b|

8Nb

|| |g0〉 〈g1|+ |g1〉 〈g0| ||

+
1

4

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣ · || |f1〉 〈f1| ||+
β2

4Nb

|| |f3〉 〈f3| ||+
|b|

4Nb

|| |f1〉 〈f3|+ |f3〉 〈f1| ||

+
1

4

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ · || |e1〉 〈e1| ||+
1

8

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ · ||P (|e0〉 − |e1〉)||.

Let 〈f0|f0〉 = x (thus 〈f1|f1〉 = 1−x by unitarity of U). Using the Cauchy-Schwarz
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inequality, we have 1− 2Re 〈f0|f1〉 ≤ 1 + 2
√
x(1− x) ≤ 2. Similarly, 〈g0|g0〉 , 〈g1|g1〉

are both less than 2. Then, using Lemma 5.5.1, and also the fact that ||M || = trM

for any positive operator M (in particular if M = P (z) for some z):

T1 ≤
1

4

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
β2

4Nb

+
|b|
Nb

+
1

4

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
β2

4Nb

+
|b|
Nb

+
1

2

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣

=
1

2

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
β2

2Nb

+
2|b|
Nb

+
1

2

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ . (5.15)

Observe that if b = 0, then α2 = 1 and β2 = 0, thus T1 = 0 as we would expect.

Note that, the same process may be used to bound T2 = 1
2
||ρE(0)− ρE(b)|| (here,

we no longer need the fact that || |i〉 〈i| ⊗ σ|| = ||σ||). Thus, all that remains is to

bound the change in S(B|A).

We will first bound |S(ρAB(0))− S(ρAB(b))|. Let pb(x, y) be the probability that

B’s key bit is x and A’s key is y if bias b is used. From Equation 5.12, these values

are:

pb(0, 0) =
1

4Nb

(
α2 〈g0|g0〉+ β2 〈g1|g1〉+ 2bRe 〈g0|g1〉

)
pb(0, 1) =

1

2Nb

(
α2 〈f1|f1〉+ β2 〈f3|f3〉+ 2bRe 〈f1|f3〉

)
pb(1, 0) =

1

2Nb

〈e1|e1〉

pb(1, 1) =
1

4Nb

(1− 2Re 〈e0|e1〉)

Let T2 = 1
2
||ρAB(0) − ρAB(b)|| = 1

2

∑
x,y |p0(x, y) − pb(x, y)|. Thus, to bound T2,

we must bound δb(x, y) = |p0(x, y)− pb(x, y)| for all x, y ∈ {0, 1}. These bounds are

computed as follows:



74

δb(0, 0) ≤
∣∣∣∣ 1

4N0

− α2

4Nb

∣∣∣∣ 〈g0|g0〉+

∣∣∣∣ β2

4NB

∣∣∣∣ 〈g1|g1〉+

∣∣∣∣ b

2Nb

∣∣∣∣ · |Re 〈g0|g1〉 |

≤ 1

2

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
1

2

∣∣∣∣β2

Nb

∣∣∣∣+

∣∣∣∣ bNb

∣∣∣∣

δb(0, 1) ≤
∣∣∣∣ 1

2N0

− α2

2Nb

∣∣∣∣ 〈f1|f1〉+

∣∣∣∣ β2

2Nb

∣∣∣∣ 〈f3|f3〉+

∣∣∣∣ bNb

∣∣∣∣ · |Re 〈f1|f3〉 |

≤ 1

2

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
1

2

∣∣∣∣β2

Nb

∣∣∣∣+

∣∣∣∣ bNb

∣∣∣∣

δb(1, 0) ≤
∣∣∣∣ 1

2N0

− 1

2Nb

∣∣∣∣ 〈e1|e1〉 ≤
1

2

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣

δb(1, 1) ≤
∣∣∣∣ 1

4N0

− 1

4Nb

∣∣∣∣ · |1− 2Re 〈e0|e1〉 | ≤
1

2

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ .
Thus:

T2 =
1

2

∑
x,y

δb(x, y) ≤ 1

2

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣+
1

2

∣∣∣∣β2

Nb

∣∣∣∣+

∣∣∣∣ bNb

∣∣∣∣+
1

2

∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ . (5.16)

It is not difficult to show that 1
2
||ρA(0) − ρA(b)|| may be upper bounded by the

same quantity (by use of the triangle inequality). Thus we have:
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|S(ρBE(0))− S(ρBE(b))| ≤ T1 log 7 + h(T1)

|S(ρE(0))− S(ρE(b))| ≤ T1 log 3 + h(T1)

|S(ρAB(0))− S(ρAB(b))| ≤ T2 log 3 + h(T2)

|S(ρA(0))− S(ρA(b))| ≤ T2 log 1 + h(T2) = h(T2),

and so, from Equation 5.14:

|r(U, 0)− r(U, b)| ≤ T1 log 21 + T2 log 3 + 2h(T1) + 2h(T2), (5.17)

where T1 is bounded by Equation 5.15 and T2 is bounded by Equation 5.16. So long

as these upper-bounds are no greater than 1/2, they may be used to upper bound

Equation 5.17; if they are larger than 1/2, they may be capped at that value (the

binary entropy function h(x) taking its maximum when x = 1/2).

In practice, this should be sufficient to generate a bound on the key rate, as the

quantity Nb may be estimated directly (N0 may be estimated as described below).

However, if we wish to compute a bound based only on the bias b, we must continue

forward and bound those terms which appear in T1 and T2 which rely on Nb.

First, since we are assuming N0 and Nb are both non zero, we have:

∣∣∣∣ 1

N0

− α2

Nb

∣∣∣∣ =
1

N0Nb

|Nb − α2N0|∣∣∣∣ 1

N0

− 1

Nb

∣∣∣∣ =
1

N0Nb

|Nb −N0|.
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From this, we may bound:

|Nb − α2N0| =
∣∣∣∣β2

4
〈g1|g1〉+

b

2
Re 〈g0|g1〉+

β2

2
〈f3|f3〉+ bRe 〈f1|f3〉

+
1

2
(1− α2) 〈e1|e1〉+

1

4
(1− α2)(1− 2Re 〈e0|e1〉)

∣∣∣∣

≤ β2

∣∣∣∣14 〈g1|g1〉+
1

2
〈f3|f3〉+

1

2
〈e1|e1〉+

1

4
(1− 2Re 〈e0|e1〉)

∣∣∣∣
+ b

∣∣∣∣12Re 〈g0|g1〉+Re 〈f1|f3〉
∣∣∣∣

≤ 2β2 + 2|b|,

where the first inequality follows from the fact that α2 + β2 = 1 ⇒ β2 = 1 − α2.

Similar algebra yields:

|Nb −N0| ≤ 2β2 + 2|b|. (5.18)

All that remains is to lower bound Nb (thus upper-bounding 1/N0Nb). Observe

that Nb may be written as the sum of four non-negative values: Nb = p00 + p01 +

p10 + p11, where pij is the probability that A and B’s raw key bit is j, i respectively,

conditioning on the event they both accept. That is (from Equation 5.12):
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p00 =
α2

4
〈g0|g0〉+

β2

4
〈g1|g1〉+

b

2
Re 〈g0|g1〉

p01 =
α2

2
〈f1|f1〉+

β2

2
〈f3|f3〉+ bRe 〈f1|f3〉

p10 =
1

2
〈e1|e1〉

p11 =
1

4
(1− 2Re 〈e0|e1〉).

By unitarity of U , these quantities are non-negative. Thus, we may trivially bound:

Nb ≥ p10 + p11 ≥
1

2
Q+

1

4
(1− 2

√
Q(1−Q)),

where Q = 〈e1|e1〉 is the probability of a |0〉 flipping to a |1〉 in the return chan-

nel. (Note that we used the Cauchy-Schwarz inequality to bound Re 〈e0|e1〉 ≥

−
√
Q(1−Q).) It is not difficult to show numerically that this function is lower

bounded by .146, thus giving us a bound on the quantities T1 and T2 (and thus a

bound on the difference in the key rate r(b, U)) as functions only of b.

As future work, it might be possible to improve this bound. In practice, however,

one may simply estimate Nb exactly (this is simply the probability of accepting an

iteration) and use Equation 5.18 to determine bounds on T1 and T2.

It is not difficult to see that, in the absence of bias (i.e., b = 0), the protocol is

similar to B92 [2]. Indeed, in this case, the state leaving B is |+〉 with probability

1/2 or |0〉 with probability 1/2. The only difference between the two protocols is that

the users of our semi-quantum version may estimate the values of |ei〉 directly for all

i = 0, 1, 2, 3 (whereas in B92, only |e0〉 and |e1〉 may be estimated). Thus, the key

rate can be no worse than B92 in this instance, and, therefore, a user of our protocol

may use the techniques from [22] to first bound r(0, U) (no exact equation for B92
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exists as far as we are aware - unlike the three state BB84 case considered earlier)

followed by the procedure described at the end of Chapter 4.3.3 to lower bound rb,

the key rate of our protocol optimized over all possible attack operators U . So long

as this bound is greater than zero, A and B need not abort.
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Chapter 6

Mediated Semi-Quantum Key Distribution

Up until now, we have considered the following scenario: there are two users A

and B who wish to establish a secret key, secure against an all-powerful adversary E.

Further, while the user A is fully quantum, the user B is “classical” or semi-quantum.

In this chapter, we consider the case when both A and B are classical in nature.

Clearly this cannot be done without some form of additional quantum resources

(otherwise A and B might as well use a standard classical channel). Thus, we add to

this picture a third party: a quantum server or center C which is capable of producing

and working with quantum resources (e.g., he is able to produce and measure qubits in

a variety of bases). We call such a protocol a mediated semi-quantum key distribution

protocol. This task would be trivial if C were trusted; instead we are going to assume

that C is adversarial. We will also assume that there may be an additional third-party

attacker E (independent of A, B, and C). Despite this, we will show it is possible for

classical A and B to distill a secure secret key. See Figure 6.1 for a diagram of the

situation we consider in this chapter.

In this chapter, we will first discuss our protocol. Following this, we will show its

unconditional security by computing a lower-bound on its key rate in the asymptotic

scenario. This bound will be a function of several parameters which may be estimated

by A and B. The information in this chapter is derived from a paper we submitted

in [53].
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Figure 6.1: A diagram of the situation we consider in this chapter. Here, there are
two semi-quantum users A and B. A quantum communication line connects these
users to an untrusted and adversarial quantum server. Furthermore, there may be
additional eavesdroppers attacking each of the quantum channels.

6.1 The Protocol

Our protocol requires a quantum communication channel connecting the quantum

server/center C to A and also to B (there is no need for a channel connecting A

directly to B). We also assume an authenticated classical channel connecting A to

B and an unauthenticated classical channel connecting C to one of A or B (possibly

both). Any message that the server sends to A or B is automatically forwarded by

that party to the other user via the authenticated channel (e.g., if C sends a message

to A, she will then forward it to B over the authenticated channel). This ensures that

C cannot send different messages to each user separately (without being caught in

which case A and B will simply abort). In fact, from now on, we will simply assume

that C sends a single message to both parties.

Note that the channel connecting the server to A and/or B is not required to be

authenticated. Indeed, at first, we will assume that C is the only adversary in which

case it makes no sense for his messages to be authenticated. Later, when we consider

third-party attackers E, these users may arbitrarily alter C’s messages. However,
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in this case, their attack may be “absorbed” into C’s attack and thus the security

bounds we prove hold even then. There may be more optimistic security bounds,

however, if we assume C is trusted and his channel is authenticated - a scenario we

will consider later.

Our protocol requires preparation and measurements in the Bell basis, the states

of which are defined as:

|Φ±〉 =
1√
2

(|00〉 ± |11〉)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉).

We will describe our protocol first assuming the center C is perfectly honest and

trustworthy. In this case, the protocol repeats the following procedure:

1. C will prepare the Bell state |Φ+〉 and send one particle to A, the other to B.

2. A will choose randomly either to reflect the qubit (this with probability pAR) or

to measure and resend it (this with probability pAM = 1 − pAR). If A measures

and resends, the measurement result is saved as her potential raw key bit for

this iteration.

3. B will also choose randomly, and independently of A, to reflect or measure and

resend (with probabilities pBR and pBM respectively). If B measures and resends,

the measurement result is saved as his potential raw key bit for this iteration.

4. C receives both qubits back from A and B (neither of whom have yet divulged

their choice to reflect or measure and resend). He will then perform a Bell

measurement. If his result is |Φ−〉 he will send to A and B the classical message

“−1”. For any other measurement result, C will send the message “+1”.
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5. A and B will now disclose (over the authenticated channel) their choice to reflect

or measure and resend:

• If they both measured and resent, and if C sent “−1”, they will keep their

raw key bits; otherwise this iteration is discarded

• If A and B both reflected, C should have sent the message “+1” - if C

sent the message “−1”, they will count this round as an error.

Notice that this protocol only uses those iterations where both A and B measure

and resend and C sends “−1”. Assuming an honest C and no additional noise, this

implies that, after repeating the process above N times, the size of the raw key is

expected to be NpAMp
B
M/2. Of course, following the example of [50], we may set pAM

and pBM arbitrarily close to one improving the raw key size to roughly N/2. It is an

open question as to whether or not a mediated SQKD protocol may be developed

which attains a greater efficiency.

As is usual, after running the above process, A and B will divulge certain mea-

surement results permitting them to gauge various statistics of the quantum channel

(and C’s attack). If the error rate is low enough (to be determined), they will then

run an error correction and privacy amplification protocol to distill a final, secure,

secret key.

6.2 Collective Attacks

We now consider the security of our protocol assuming an untrusted and adversarial

center. In this case, the center C will prepare any arbitrary state in step (1) of

the protocol (though we will assume he is limited to sending a single qubit each

iteration to each party - an assumption used in the proofs of other SQKD protocols

up to now). This state may possibly be entangled with his private ancilla. Then, on
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step (4), C will perform any arbitrary operation of his choice allowed by the laws of

physics. This operation may include additional, unmeasured, information in quantum

memory. However, he is restricted to sending only a single message “+1” or “−1” to

each user A and B, and this message must be the same for both parties.

We will first consider collective attacks. In this case, the center will perform the

same attack operation each iteration. This attack will be modeled as follows: on step

(1), C will not necessarily send |Φ+〉, but instead any arbitrary state of his choosing

|ψ0〉 ∈ H, where:

H = HTA
⊗HTB

⊗HC .

We use the two dimensional Hilbert spaces HTA
and HTB

to model the qubit sent (or

“transmitted”) to A and B respectively. HC will be used to model C’s private ancilla

which, without loss of generality, we may assume to be finite dimensional.

We may assume, also without loss of generality, that the state C sends is pure

(otherwise C may purify it). In this case, this state |ψ0〉 may be written as:

|ψ0〉 =
∑

i,j∈{0,1}

αi,j |i, j〉TA,TB
⊗ |ci,j〉C , (6.1)

where each αi,j ∈ C such that
∑

i,j |αi,j|2 = 1. The states |ci,j〉 we take to be

normalized, but not necessarily orthogonal.

When the qubits return to C on step (4) (after A and B’s operations), we allow

C to perform any operation of his choice on the entire system living in H. Since he

must additionally send a single classical bit (his message to A and B), we will model

this attack as a quantum instrument [54]. This instrument, denoted I acts on density
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matrices ρ as follows:

I(ρ) =

N0∑
k=1

Ek,0ρE
∗
k,0 ⊗ |+1〉 〈+1|cl +

N1∑
k=1

Ek,1ρE
∗
k,1 ⊗ |−1〉 〈−1|cl , (6.2)

such that:
N0∑
k=1

E∗k,0Ek,0 +

N1∑
k=1

E∗k,1Ek,1 = I.

We may assume, in our case, that N0 and N1 are both finite.

Observe that, in the above, we have expanded our Hilbert space by adding the

subspace Hcl spanned by orthonormal basis {|+1〉cl , |−1〉cl}. This will be used to

model C’s classical message, sent to A and B. Since C cannot send different messages

to different users (without being caught and thus causing the protocol to abort), this

is sufficient.

6.2.1 An Unentangled Initial State

The first step of the proof is to simplify the state |ψ0〉 that C initially sends in step

(1) (Equation 6.1). We will show, using a technique similar to the proof of Theorem

4.2.1, that, without any loss of power to C, he may instead send the far simpler state

|ψ′0〉 =
∑

i,j αi,j |i, j〉 (which is unentangled with his private ancilla).

Indeed, assume that C initially sends the state |ψ0〉 from Equation 6.1. Also

assume that either both A and B reflected, or they both measured and resent (any

other case is discarded by our protocol). Then, on step (4), when he receives the

qubits back, the system is in the mixed state (up to a normalization term):

ρ = pAR · pBR |ψ0〉 〈ψ0|+ pAM · pBM

 ∑
i,j∈{0,1}

|αi,j|2 |i, j, ci,j〉 〈i, j, ci,j|

 ,
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If, however, C sends the simpler state |ψ′0〉, the state on step (4) is, again up to

the same normalization term as before:

ρ′ = pARp
B
R |ψ′0〉 〈ψ′0| ⊗ |0〉 〈0|C + pAM · pBM

(∑
i,j

|αi,j|2 |i, j〉 〈i, j| ⊗ |0〉 〈0|C

)
.

(Note that we have assumed C’s ancilla is cleared to some known “zero” state |0〉C ;

this is without loss of generality.)

From this point, a unitary operator V may be constructed which sends |i, j, 0〉 to

|i, j, ci,j〉. Clearly V ρ′V ∗ = ρ and so, there is no advantage to C sending |ψ0〉 initially.

6.2.2 A Unitary Attack Operator

The next step in the proof is to simplify C’s attack on step (4) by showing it is

equivalent to a unitary attack operator. To do this, we will use standard techniques

(such as in [23, 55]) to represent the quantum instrument I as a unitary operator

acting on a larger Hilbert space. Giving C access to this larger space, only increases

his power, thus providing us with a lower-bound on the security of our protocol.

Let I be C’s quantum instrument (see Equation 6.2). Define the isometry UI in

the following manner:

UI :=

N0∑
k=1

Ek,0 ⊗ |k〉E1
|0〉E2

|+1〉cl +

N1∑
k=1

Ek,1 ⊗ |N0 + k〉E1
|1〉E2

|−1〉cl .

It is not difficult to show that UI is an isometry mappingH toH⊗HE1⊗HE2⊗Hcl,

where the subspace HE1 is spanned by the orthonormal basis {|i〉E1
| i = 1, · · · , N0 +

N1} and HE2 is the subspace spanned by orthonormal basis {|0〉E2
, |1〉E1

}. It is also
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not difficult to show that it is an isometry:

U∗IUI =
(∑N0

k=1E
∗
k,0 ⊗ 〈k, 0,+1|+

∑N1

k=1E
∗
k,1 ⊗ 〈N0 + k, 1,−1|

)
·
(∑N0

k=1Ek,0 ⊗ |k, 0,+1〉+
∑N1

k=1Ek,1 ⊗ |N0 + k, 1,−1〉
)

=
∑N0

k=1E
∗
k,0Ek,0 ⊗ 〈k, 0,+1|k, 0,+1〉

+
∑N1

k=1E
∗
k,1Ek,1 ⊗ 〈N0 + k, 1,−1|N0 + k, 1,−1〉

=
∑N0

k=1E
∗
k,0Ek,0 +

∑N1

k=1E
∗
k,1Ek,1 = I.

Finally, given |ψ〉 ∈ H, it is clear that:

trE1,E2(UI |ψ〉 〈ψ|U∗I) ≡ I(|ψ〉 〈ψ|).

(Due to linearity, this is also true for any mixed state.)

Now, assume that C has access to the subspace HE1⊗HE2 (this can only increase

his power). We may also assume, without loss of generality, that on step (4), when C

receives the qubits from A and B, that the entire quantum system may be described

by the state |ψ, 0, 0, 0, 0〉 ∈ H⊗HE1 ⊗HE2 ⊗Hcl. That is, this “ancilla” HC ⊗HE1 ⊗

HE2 ⊗Hcl is cleared to an arbitrary “zero” state.

Lastly, the isometry UI may be extended to a unitary operator, which we denote UI

in such a manner so that UI |ψ, 0, 0, 0, 0〉 ≡ UI |ψ, 0〉. Its action on states |ψ, k, i, j, l〉

for k, i, j, l 6= 0 is not relevant.

We therefore have:

trE1,E2 (UI |ψ, 0, 0, 0〉 〈ψ, 0, 0, 0| U∗I) = trE1,E2 (UI |ψ〉 〈ψ|U∗I) = I(|ψ〉 〈ψ|),
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and so we conclude that it is sufficient to consider only unitary attack operators on

step (4) when proving the security of our protocol. If C sends the classical message

“+1”, this is equivalent to projecting the above state’s Hcl portion to |+1〉cl. Likewise

for C sending the message “−1”. Thus, C’s choice determining which message to send

to A and B, followed by the state resulting from such a decision (Equation 6.2), is

equivalent to a projective measurement of the Hcl subspace in the {|+1〉cl , |−1〉cl}

basis. From here on, we will also absorb the auxiliary subspaces HE1 and HE2 into

HC .

6.2.3 Bounding the Key Rate

Recall that the key rate of a QKD protocol (semi-quantum or otherwise) in the

asymptotic scenario is defined to be:

r = lim
N→∞

`(N)

N
,

where N is the size of the raw key and `(N) is the size of the secure secret key

(possibly zero). It was shown in [29, 22] that, assuming collective attacks:

r = I(A : B)− I(A : C),

where I(A : C) is the quantum mutual information held between A and C. This is

defined to be:

I(A : C) = S(ρA) + S(ρC)− S(ρAC).

Similarly, I(A : B) is the (classical) mutual information held between A and B. Note

that this equation is exactly equivalent to Equation 2.6 which we used in previous

chapters. However, for this mediated protocol, it turns out the mutual information
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version is easier to work with.

Note that, after the completion of the quantum communication stage, after pa-

rameter estimation, but before error correction and privacy amplification, a single

iteration of our protocol may be described by the following state:

ρABC =
∑

x,y∈{0,1}

p(x, y) |x, y〉 〈x, y| ⊗ ρ(x,y)
C ,

where p(x, y) denotes the probability that A and B’s raw key bits are x and y respec-

tively, and ρ
(x,y)
C represents the state of C’s ancilla in this event (which depends on

the protocol and C’s attack). For such a state, it is not difficult to show that:

I(A : C) = S(ρC)−
∑

x∈{0,1}

p(x)S
(
ρ

(x)
C

)
.

(In the above, we have traced out B’s system.)

Recall that, given a matrix A, we denote its trace norm by ||A||. Furthermore,

if A is an n × n Hermitian matrix with eigenvalues {λi}ni=1, then ||A|| =
∑n

i=1 |λi|.

Using a result from [56], which claims that:

S(ρC)− 1

2
S
(
ρ

(0)
C

)
− 1

2
S
(
ρ

(1)
C

)
≤ 1

2

∣∣∣∣∣∣ρ(0)
C − ρ

(1)
C

∣∣∣∣∣∣ , (6.3)

we can bound I(A : C) as follows:

I(A : C) = S(ρC)− 1

2
S
(
ρ

(0)
C

)
− 1

2
S
(
ρ

(1)
C

)
≤ 1

2

∣∣∣∣∣∣ρ(0)
C − ρ

(1)
C

∣∣∣∣∣∣ . (6.4)

We will use this bound shortly.
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6.2.4 Bounding I(A : C)

Before we can continue, we require a small lemma:

Lemma 6.2.1. Let ρ = |a〉 〈b|+ |b〉 〈a|, where |a〉 , |b〉 ∈ HD for some D-dimensional

Hilbert space HD (D < ∞). We place no restrictions on |a〉 and |b〉 besides that

trρ = 0. Then it holds that:

||ρ|| ≤ 2
√
〈a|a〉 〈b|b〉.

Proof. Since ρ is Hermitian, to compute ||ρ||, we must find its eigenvalues. Write

|a〉 = α |ã〉, and |b〉 = x |ã〉+ y |ζ〉 where α, x, y ∈ C and |ã〉 and |ζ〉 are orthonormal.

Clearly this implies |α|2 = 〈a|a〉, |x|2 + |y|2 = 〈b|b〉, and 〈a|b〉 = α∗x. Also note that

since ρ has trace zero, this implies 〈a|b〉+ 〈b|a〉 = α∗x+ x∗α = 0.

Choosing a suitable basis for HD, the first two entries of which are {|ã〉 , |ζ〉}, we

may write ρ as:

ρ ≡

 σ 0

0 0

 ,

where the 2× 2 matrix σ is defined as:

σ =

 0 αy∗

α∗y 0

 .

From this, we see there are two non-zero eigenvalues of ρ:

λ± = ±
√
|α|2|y|2 = ±

√
〈a|a〉 (〈b|b〉 − |x|2),
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and so:

||ρ|| = |λ−|+ |λ+| = 2λ+ = 2
√
〈a|a〉 (〈b|b〉 − |x|2) ≤ 2

√
〈a|a〉 〈b|b〉, (6.5)

where the inequality follows from the observation that |x|2 and 〈a|a〉 are non-negative.

This result will be useful later. Note the difference between this result, and Lemma

5.5.1; the latter did not require the operator to be of trace zero. We can now return

to our protocol.

Define pi,j to be the probability that, if A and B perform a measurement (on step

(2) and (3) of the protocol), the joint outcome is |i, j〉. As in [57] (where the B92 [2]

protocol was proved secure), we may restrict our attention to “symmetric” attacks

and enforce the condition that p0,0 = p1,1 = (1−Q)/2 and p0,1 = p1,0 = Q/2. Here Q

is used to represent the probability that A and B’s measurement results are different.

Let U = UI be C’s unitary attack operator used on step (4) (collective attacks

imply the same operator is used each iteration). From our discussion in a previous

section, we may, without loss of power to C, assume that the state he initially sends

on step (1) of the protocol is unentangled with his private ancilla. Thus, we only need

to describe U ’s action on the four dimensional space HTA
⊗HTB

. The action may be

described as follows:

U |Φ+〉 = |e0〉 |+1〉+ |f0〉 |−1〉 (6.6)

U |Φ−〉 = |e1〉 |+1〉+ |f1〉 |−1〉

U |Ψ+〉 = |e2〉 |+1〉+ |f2〉 |−1〉

U |Ψ−〉 = |e3〉 |+1〉+ |f3〉 |−1〉 ,
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where each |ei〉 and |fi〉 are arbitrary states (not necessarily normalized nor orthog-

onal) in HTA
⊗HTB

⊗HC . Of course unitarity imposes certain restrictions on these

states which we will make use of later.

By linearity of U , it holds that:

U |00〉 =
1√
2

(|e0〉+ |e1〉) |+1〉+
1√
2

(|f0〉+ |f1〉) |−1〉

U |11〉 =
1√
2

(|e0〉 − |e1〉) |+1〉+
1√
2

(|f0〉 − |f1〉) |−1〉

U |01〉 =
1√
2

(|e2〉+ |e3〉) |+1〉+
1√
2

(|f2〉+ |f3〉) |−1〉

U |10〉 =
1√
2

(|e2〉 − |e3〉) |+1〉+
1√
2

(|f2〉 − |f3〉) |−1〉 .

At this point, we will make one more assumption regarding the symmetry of C’s

attack. In addition to assuming p0,0 = p1,1 and p0,1 = p1,0, we will also assume that the

probability of C sending the message “−1” in case A and B’s measurement result was

|0, 0〉 is equal to the probability of him sending that same message if their measure-

ment result was |1, 1〉. We will make a similar assumption in the event A and B’s mea-

surement results differ. These statistics can easily be estimated by A and B and can

be enforced. Further, we will show later that these are not unreasonable assumptions.

In particular, however, this assumption implies that Re 〈f0|f1〉 = Re 〈f2|f3〉 = 0.

Now, denote by pa, the probability that C sends the message “−1” on any partic-

ular iteration assuming that A and B both measured. Taking into account the above

assumptions, this value is:

pa =
1

2
(1−Q)(〈f0|f0〉+ 〈f1|f1〉) +

1

2
Q(〈f2|f2〉+ 〈f3|f3〉). (6.7)

We can now prove an upper-bound on the quantity I(A : C).
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Theorem 6.2.1. Using the above notation, and given the above discussed assump-

tions, it holds that:

I(A : C) ≤ (1−Q)

pa

√
〈f0|f0〉 〈f1|f1〉+

Q

pa

√
〈f2|f2〉 〈f3|f3〉 (6.8)

≤ (1−Q)

pa

√
〈f0|f0〉+

Q

pa
. (6.9)

Proof. Let ρABC be the density operator describing the state of the quantum system

in the event that both A and B measured and resent (otherwise the iteration is not

used for the raw key, so there is nothing to learn), after C has attacked with U , but

before he sends a message (i.e., before he measures Hcl). This state is:

ρABC =

(
1−Q

2

)
(U00 + U11) +

(
Q

2

)
(U01 + U10),

where:

Uij = |i, j〉 〈i, j|AB ⊗ U |i, j〉 〈i, j|U
∗

(above the state |i, j〉 〈i, j|AB are A and B’s private registers used to store their raw

key bit for this particular iteration). Now assume that C sends the message “−1”

(otherwise, again, the iteration is discarded and there is nothing to learn). From our

earlier discussion, the resulting state is the projection of ρABC to |−1〉 〈−1|cl which
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yields:

ρ′ABC =
1

p

((
1−Q

2

)
|0, 0〉 〈0, 0|AB ⊗ P (|f0〉+ |f1〉)

)
+

1

p

((
1−Q

2

)
|1, 1〉 〈1, 1|AB ⊗ P (|f0〉 − |f1〉)

)
+

1

p

(
Q

2
|0, 1〉 〈0, 1|AB ⊗ P (|f2〉+ |f3〉)

)
+

1

p

(
Q

2
|1, 0〉 〈1, 0|AB ⊗ P (|f2〉 − |f3〉)

)
,

where we use the notation P (z) = zz∗ for any vector z. We also defined p = 2pa (see

Equation 6.7).

Next, we trace out B’s system resulting in the state:

ρ′AC =
1

2
|0〉 〈0|A ⊗

ρ
(0)
C︷ ︸︸ ︷(

1−Q
p

P (|f0〉+ |f1〉) +
Q

p
P (|f2〉+ |f3〉)

)
+

1

2
|1〉 〈1|A ⊗

(
1−Q
p

P (|f0〉 − |f1〉) +
Q

p
P (|f2〉 − |f3〉)

)
︸ ︷︷ ︸

ρ
(1)
C

.

By our symmetry assumptions, it holds that Re 〈f0|f1〉 = Re 〈f2|f3〉 = 0. This

further implies that trρ
(0)
C = trρ

(1)
C = 1.

Define ρ̃ = ρ
(0)
C − ρ

(1)
C . This state is:

ρ̃ =
2

p
((1−Q) |f0〉 〈f1|+ (1−Q) |f1〉 〈f0|+Q |f2〉 〈f3|+Q |f3〉 〈f2|). (6.10)
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Define T = 1
2
||ρ̃||. This value is:

T =
1

p
||(1−Q) |f0〉 〈f1|+ (1−Q) |f1〉 〈f0|+Q |f2〉 〈f3|+Q |f3〉 〈f2| ||

≤ 1−Q
2pa

|| |f0〉 〈f1|+ |f1〉 〈f0| ||+
Q

2pa
|| |f2〉 〈f3|+ |f3〉 〈f2| ||.

Let σ0 = |f0〉 〈f1| + |f1〉 〈f0| and also σ1 = |f2〉 〈f3| + |f3〉 |f2〉. To bound T , we

must bound ||σi||. Due to our symmetry assumptions, Re 〈f0|f1〉 = Re 〈f2|f3〉 = 0

which implies trσ0 = trσ1 = 0 and, therefore, Lemma 6.2.1 can be applied yielding:

T ≤ 1−Q
pa

√
〈f0|f0〉 〈f1|f1〉+

Q

pa

√
〈f2|f2〉 〈f3|f3〉. (6.11)

Combining this bound, with Equation 6.4 proves the first claim (Equation 6.8).

The second claim (Equation 6.9) follows immediately simply by observing that 〈fi|fi〉

is less than 1 for all i.

This theorem shows that, in order to upper-bound I(A : C) (thus lower-bounding

the key rate r), A and B must estimate the quantities 〈fi|fi〉. These values are the

probabilities that C sends the classical message “−1” based on which one of the four

Bell states was received by him in step (4). Of course, A and B, being semi-quantum,

cannot prepare Bell states and so are unable to measure these quantities directly. As

we demonstrate next section, however, they are able to form reasonable estimates for

them providing us with a lower-bound on our mediated protocol’s key rate.

6.2.5 First Bound: An Honest Center

In this section we will use our bound on I(A : C), from last section, to compute

a lower-bound on the key rate of our mediated protocol in two different scenarios.

First, in order to justify our symmetry assumptions earlier, we will consider the case
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of an honest center with a noisy channel. Here, the noise in the quantum channel

will be modeled as a depolarization channel. The bound we compute here can also be

applied in the event C is “semi-honest” (that is, he follows the protocol description

on step (1) and (4), but after sending his message, he is allowed to do whatever he

likes with the information he has). After this example, we will consider the worst

case: that C is adversarial.

To model the noisy channel, assume that C prepares the state ρ ∈ HTA
⊗ HTB

.

Then, the joint state, after passing through the quantum channel, will be described

by the mixed state (1 − p)ρ + p
4
I, where I is the identity operator. Similarly, if the

joint state leaving the two users A and B is σ, the state arriving at C is the mixed

state (1− q)σ + q
4
I.

To simplify our notation, in this example, we will relabel the Bell states as follows:

|φ0〉 = |Φ+〉, |φ1〉 = |Φ−〉, |φ2〉 = |Ψ+〉, and |φ3〉 = |Ψ−〉. Assuming an honest C in

this example, we know that he initially prepares and sends the state ρ = |φ0〉 〈φ0|

and, from the above discussion, when it arrives at the users A and B, the joint system

can be described by the state:

ρ = (1− p) |φ0〉 〈φ0|+
p

4

3∑
i=0

|φi〉 〈φi| . (6.12)

From this, the probability that A measures |i〉 and B measures |j〉 (denoted pi,j

as in the previous section) are:

p0,0 = p1,1 =
1

2
− p

4

p0,1 = p1,0 =
p

4

From the previous section, we define Q/2 = p0,1 = p1,0 which implies Q = p
2
. It is
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clear that this fits our first requirement of a symmetric attack. This value p (and

therefore the quantity Q) are parameters that A and B may estimate.

Now, assume that both A and B reflect their qubits. In this case, the state arriving

back to C can be described by the mixed state:

ρ′ = (1− q)ρ+
q

4

3∑
i=0

|φi〉 〈φi| (6.13)

= (1− q)

[
(1− p) |φ0〉 〈φ0|+

p

4

3∑
i=0

|φi〉 〈φi|

]
+
q

4

∑
i

|φi〉 〈φi| . (6.14)

We are assuming, for now, that C is honest and so he will always send the message

“+1” if he measures |φi〉 〈φi| for i 6= 1. It is clear, from the above equation, that the

value pw (which represents the probability that C sends “−1” if both A and B reflect)

is:

pw =
(1− q)p

4
+
q

4
, (6.15)

which allows the users A and B to determine the value of q:

q =
4pw − p
1− p

(6.16)

This provides us with enough information to estimate the values 〈fi|fi〉: the prob-

ability that C sends the message “−1” when the state leaving A and B is |φi〉. After
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C’s operation on the returned qubits, the joint system may be described as follows:

|φ0〉 〈φ0| →
(

(1− q) +
3q

4

)
σ

(0)
+1 ⊗ |+1〉 〈+1|cl +

(q
4

)
σ

(0)
−1 ⊗ |−1〉 〈−1|cl

|φ1〉 〈φ1| →
(

3q

4

)
σ

(1)
+1 ⊗ |+1〉 〈+1|cl +

(
(1− q) +

q

4

)
σ

(1)
−1 ⊗ |−1〉 〈−1|cl

|φ2〉 〈φ2| →
(

(1− q) +
3q

4

)
σ

(2)
+1 ⊗ |+1〉 〈+1|cl +

(q
4

)
σ

(2)
−1 ⊗ |−1〉 〈−1|cl

|φ3〉 〈φ3| →
(

(1− q) +
3q

4

)
σ

(3)
+1 ⊗ |+1〉 〈+1|cl +

(q
4

)
σ

(3)
−1 ⊗ |−1〉 〈−1|cl .

We have written the effect of C’s operation with respect to the Bell basis in keeping

with Equation 6.6. Each σ
(i)
±1 is a density operator which represents the state of C’s

system in the event the joint system leaving A and B was |φi〉 and C’s message was

“±1”. For an honest C, these systems are all equal; for a semi-honest C, they may

provide some information to the center. The reader may easily verify, by performing

the same computation as above for the case that the state leaving A and B is |i, j〉 〈i, j|

(for i, j ∈ {0, 1}), the probability that C sends the message “−1” in the event both

A and B measure zero, is equal to the probability of him sending the same message

if the users both measure one (likewise for the case when their measurement results

differ). Thus, this scenario fits our symmetry assumptions. Further this shows our

symmetry assumptions to not penalize an honest server running on a noisy channel.

Of course the state leaving A and B is never, for example, |φ2〉. But this is

irrelevant. The point is that if the state were |φ2〉, then this would be the result and,

assuming a depolarization channel and honest C, A and B may estimate these states

thus producing a lower-bound on the key rate using the results from the previous

section. In particular, they may estimate the quantity 〈f1|f1〉 = (1 − q) + q
4

and

〈fi|fi〉 = q
4

(for i = 0, 2, 3).

Using our results from the previous section, we may bound I(A : C) using Theorem
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6.2.1. To estimate the key rate all that remains is to compute I(A : B). Denote by

QZ , the probability that A and B’s measurement results are different assuming that

C sent the message “−1” (this may be very different from Q). This value, for any

scenario, is:

QZ =
Q(〈f2|f2〉+ 〈f3|f3〉)

2pa
, (6.17)

which in our case, with an honest center and noisy channel, is:

QZ =
pq

8pa
. (6.18)

It is trivial to show that I(A : B) = 1 − h(QZ). This provides us with enough

information to estimate the key rate. For example, in the event p = q (the noise

in the forward directing is equal to the noise in the reverse channel), we see our

protocol maintains a positive key rate for all Q ≤ 19.9% (see Figure 6.2; also see

Figure 6.3 which shows how the values pw, pa, and QZ are affected by p). This is a

much higher tolerated noise threshold than BB84 (which supports up to 11% error

[22]). This is due to the fact that QZ is very small, even for large Q (see Figure 6.3)

thanks to the honest server “throwing out” the majority of iterations where A and

B’s measurement results are different. In this case, I(A : B) remains large - that is

to say, little information leaks due to error correction.

6.2.6 Second Bound: An Adversarial Center

We now consider the worst-case scenario: C is fully adversarial, and all noise is

induced by C’s attack. Let |ψ0〉 =
∑

i,j αi,j |i, j〉 be the state C initially prepares

for sending in step (1) of the protocol. As we consider only symmetric attacks, it is

forced that |α0,0|2 = |α1,1|2 = (1 − Q)/2 and |α0,1|2 = |α1,0|2 = Q/2. Our first claim

is that, without any loss of power to the center C, we may assume that C prepares
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Figure 6.2: Showing the key rate of our protocol when the center is honest (or semi-
honest) with two independent depolarizing channels modeling the noise in both chan-
nels (one with parameter p and the second with parameter q). The key rate in this
figure is plotted as a function of Q = p/2 which is the error rate of A and B’s mea-
surements. In the above graph, we assume p = q - i.e., the noise in both directions
of the quantum channel is equal. Notice that the key rate remains positive for all
Q ≤ 19.9%.

Figure 6.3: Showing various statistics of the depolarization example with honest (or
semi-honest) center, when p = q. Note that Q = p/2 is the error rate of A and B’s
measurement results. The solid line graphs the value of pw; the dashed line (top) plots
pa; finally, QZ is the dotted line. Observe that, as Q increases, QZ remains small due
to the fact that the quantum server is discarding most iterations where A and B’s
measurement results differ. While this decreases the value of pa, less information is
leaked due to error correction.
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the initial state |ψ′0〉 =
√

1−Q |Φ+〉+
√
Q |Ψ+〉.

Assume, first, that C sends the state |ψ0〉. As we are assuming all noise is induced

by C’s attack, the state of the system arriving back to C (after A and B either

both reflect or both measure and resend - any other case is discarded), is (up to a

normalization term):

ρ = pR |ψ0〉 〈ψ0|+ pM

(∑
i,j

|αi,j|2 |i, j〉 〈i, j|

)
,

where pR denotes the probability that both users A and B reflect and pM is the

probability they both measure and resend. However, if instead C were to send |ψ′0〉,

the state arriving back to C (after A and B’s operation and again up to the same

normalization term as before) is:

ρ′ = pR |ψ′0〉 〈ψ′0|+ pM

(
1−Q

2
|0, 0〉 〈0, 0|+ 1−Q

2
|1, 1〉 〈1, 1|

+
Q

2
|0, 1〉 〈0, 1|+ Q

2
|1, 0〉 〈1, 0|

)
.

Write each αj,k = eiθj,kpj,k where:

pj,k =


√

1−Q
2

if j = k√
Q
2

if j 6= k

Define the unitary operator: V =
∑

j,k e
iθj,k |j, k〉 〈j, k|. Then it is clear that V ρ′V ∗ =

ρ. We conclude, therefore, that if there were an advantage for C in sending the state

|ψ0〉 initially in step (1), C may instead simply prepare and send |ψ′0〉 and apply this

operator V on step (4) without any loss of power. Therefore, to simplify our analysis,

we will assume that C sends the state |ψ′0〉 on step (1).
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Denote C’s unitary attack operator, as described by Equation 6.6, by U . By

linearity, we have:

U |ψ′0〉 = (
√

1−Q |e0〉+
√
Q |e2〉) |+1〉cl + (

√
1−Q |f0〉+

√
Q |f2〉) |−1〉cl .

We will again denote by pw the probability that C sends the message “−1” if both

A and B reflect. In this case, using the above equation, we find this value to be:

pw = (1−Q) 〈f0|f0〉+Q 〈f2|f2〉+ 2
√
Q(1−Q)Re 〈f0|f2〉 . (6.19)

It is not difficult to see that if Q and pw are both small, then so must be 〈f0|f0〉.

Our goal is to upper-bound this quantity, thus providing us with an upper-bound

on I(A : C) using Theorem 6.2.1. Obviously, we must bound this value using only

statistics that A and B may estimate.

Write |f0〉 = x |f̃0〉 and |f2〉 = yeiθ |f̃0〉 + z |ζ〉, where x, y, z ∈ R≥0, 〈f̃0|f̃0〉 =

〈ζ|ζ〉 = 1 and 〈f̃0|ζ〉 = 0. Clearly this implies x =
√
〈f0|f0〉, x2 + y2 = 〈f2|f2〉, and

xyeiθ = 〈f0|f2〉. Adopting this notation, we may rewrite Equation 6.19 as:

pw = (1−Q)x2 +Q(y2 + z2) + 2
√
Q(1−Q)xy cos θ. (6.20)



102

This we may solve for x which, taking the larger solution, yields:

x =
√
f0|f0 =

−
√
Q(1−Q)y cos θ

1−Q

+

√
Q(1−Q)y2 cos2 θ −Q(1−Q)(y2 + z2) + pw(1−Q)

1−Q

=
−
√
Q(1−Q)y cos θ

1−Q

+

√
Q(1−Q)y2(cos2 θ − 1)−Q(1−Q)z2 + pw(1−Q)

1−Q
.

It is not difficult to see that this function is maximal when y =
√
〈f2|f2〉 (which

is the maximum value y can attain), θ = π, and z = 0. These values produce:

√
f0|f0 ≤

√
1−Q(

√
Q 〈f2|f2〉+

√
pw)

1−Q
(6.21)

≤
√

1−Q(
√
Q+
√
pw)

1−Q
. (6.22)

Using this bound with Equation 6.9 (from Theorem 6.2.1), yields the following

lower-bound on the key rate:

r ≥ 1− h(QZ)− 1

pa

(√
1−Q

(√
Q+
√
pw

)
+Q

)
, (6.23)

where QZ is the probability that A and B’s measurement results are different in the

event C sends “−1”. These values, QZ , Q, pw, and pa can all be easily estimated by

A and B. As an example of this bound, assuming QZ = Q, pw = Q, and pa = 1/2,

the key rate remains positive for all Q ≤ 3.35% as shown in Figure 6.4.

This bound may be improved, however, by considering the values of 〈f2|f2〉 and

〈f3|f3〉, which may be estimated using the probability that C sends “−1” if A and
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B’s measurement results are different. Call this probability p−1(A 6= B) and it may

be estimated by A and B. Using our symmetry assumptions (and also the fact that

〈x|x〉 ≥ 0 for any vector x), we have:

1

2
〈f2|f2〉 ≤

1

2
(〈f2|f2〉+ 〈f3|f3〉) = p−1(A 6= B).

The same may be said for 〈f3|f3〉.

To demonstrate how this improves our bound, assume that both 〈f2|f2〉 and 〈f3|f3〉

are no greater than Q (considering the analysis in the previous section, this is rea-

sonable). Then, using Equation 6.8 from Theorem 6.2.1, with 〈f1|f1〉 = 1, we have

the following key rate bound:

r ≥ 1− h(QZ)− 1

pa

(√
1−Q (Q+

√
pw) +Q2

)
. (6.24)

In this scenario, QZ = Q2/pa and a graph of this bound is shown in Figure 6.5.

Now we see that, when pa = 1/2, our protocol maintains a positive key rate for all

Q ≤ 10.65%: this is almost comparable to BB84. When pa = .3 (which was the

smallest value of pa we observed in the previous depolarization example), the key

rate remains positive for all Q ≤ 5.25% which is better than the three state BB84

(which allows up to 4.25% error [3]).

Better bounds may be determined by taking into account the relation between pa

and 〈fi|fi〉. Observe that, as the former drops, so do the latter. Our bounds treat

these two interdependent quantities independently. While this yields a “worst-case”

bound, more optimistic bounds may be found in the future, perhaps, by deriving the

relationship between the two.
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Figure 6.4: A graph of the key rate of our protocol in the worst case scenario, when
the server is adversarial and A and B use only the value of pw to bound I(A : C)
(Equation 6.23). Note the key rate is positive for all Q ≤ 3.35%.

Figure 6.5: Showing the key rate of our protocol when the server is adversarial and A
and B use pw and p−1(A 6= B) to bound I(A : C) (Equation 6.24). In particular, they
observe (or enforce) 〈f2|f2〉 , 〈f3|f3〉 ≤ Q. Here we also assume pw = Q. The solid
line plots the key rate if pa = .5; the dashed line graphs the key rate when pa = .4;
finally the dotted line is when pa = .3. When pa = .5, the key rate remains positive
for all Q ≤ 10.65%. When pa = .3, it is positive for Q ≤ 5.25%. See the text for some
observations on how the effect of pa may be better bounded.
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6.2.7 General Attacks and Third-Party Eavesdroppers

In the above, we have only considered an adversarial center. However, we may also

face the situation where there are additional attackers, independent of the center

(see 6.1). In this case, though, any such attack performed by these attackers may

simply be “absorbed” into the center’s unitary attack operator U considered in the

previous section. This includes any strategy where these independent attackers alter

C’s messages (since C’s classical channel is not assumed to be authenticated). Thus,

our bound from the previous section applies even in this case.

Note that, if C’s channel is authenticated so that E cannot alter his messages, and

if we model these independent attacker’s strategy as a depolarization channel (as was

done when analyzing the key rate of B92 [22]), then our analysis in the first example

shows our protocol’s key rate remains positive so long as the noise is no greater than

19.9%. Compare this with B92’s depolarization noise level of 6.5% [58].

Our security analysis above, considered only collective attacks. However, as was

shown in [17, 18], for permutation invariant protocols, proving security against col-

lective attacks is sufficient to show security against general attacks (those where the

attacker is allowed to perform any operation within the laws of physics). Our me-

diated protocol may be made permutation invariant using the standard technique of

adding an extra communication stage, immediately after the quantum communication

stage (before parameter estimation). This involves A choosing a random permutation

and disclosing it to B (over the authenticated channel). Both A and B then permute

their measurement results using the permutation. This gives us permutation invari-

ance and so security against general attacks. Furthermore, since we are working only

with the asymptotic scenario, our security bound proven above is exactly the same

in this case.
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Chapter 7

Closing Remarks and Future Work

In this dissertation, we have studied the problem of semi-quantum key distribution.

This field of research was started in 2007 by Boyer et al. [13], however, despite

the fact that many protocols have been developed since then, their security against

general attacks was in question. Up until our work, the majority of semi-quantum

protocols were proven robust : that is, if there is an attack against the protocol, it

can be detected. While this is a good first-start towards security, it leaves a lot to be

desired. In particular, it says nothing about how many secure key bits, after privacy

amplification, can be distilled given a certain level of noise in the quantum channel

(i.e., the key rate of a protocol in, for instance, the asymptotic scenario). While all

SQKD protocols described to date have a command to “abort if the noise is over

threshold τ ,” no one knew what value to set τ .

Our work has, for the first time, given conclusive answers to this question for

many SQKD protocols. We first proved that, for any single-state protocol (one where

A is limited to sending only a single, publicly known state each iteration), E’s most

general collective attack, consisting of two unitary attack operators, is equivalent to

a restricted attack where she biases A’s superposition, and then attacks with a single

unitary operator. Using this, we were able to bound the key rate of two different

SQKD protocols, as functions of this bias term, with the key rate bound of two other

fully quantum protocols: a three state BB84 [3] and B92 [2]. This also shows that,

for small bias, the key rate of these SQKD protocols is similar to fully quantum ones.

We designed a new SQKD protocol and proved its security. This is also the first

semi-quantum protocol which permitted X basis states to contribute to the raw key
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(as opposed to being used only for security purposes) - a theoretically interesting

result. Since it is a single state protocol, it allowed us to utilize our previous results

in order to prove its unconditional security.

Finally, we have designed a new form of SQKD protocol: a mediated semi-quantum

protocol. Now, both A and B are limited/classical. In order to establish a secure

key, they must utilize the services of a quantum server: a service which is able to

produce quantum resources and measure in alternative bases. Our protocol, as we

have proven, is secure even when this server is untrusted. Indeed, if the server is

adversarial, our mediated protocol maintains a positive key rate for all noise levels

less than 10.65%. If the server is trusted, the protocol maintains a positive key rate

for noise levels less than 19.9%. This is a theoretically interesting result, however

it also has possible practical benefits. One can envision a future where there are

several limited semi-quantum users, establishing keys with one another, using the

services of a quantum server - our protocol has shifted the complexity of quantum

key distribution from the end-users to this single quantum server.

While we have greatly advanced the field of semi-quantum key distribution, much

future work remains. In particular, while we have proven the unconditional security

of several SQKD protocols (and devised techniques which can be applied to others),

there are still many other SQKD protocols which remain unconsidered. We have

already started in this direction [59], proving a lower-bound on the key rate of the

multi-state protocol of [13]. However, much work remains in this regard.

Also of interest would be to consider more practical attacks on semi-quantum key

distribution protocols: for instance multi-photon attacks [5] and the photon tagging

attack described in [60, 61]. While the first was considered partially in [62] (though

their analysis can be improved), designing a protocol secure against the second is still

an open question. We believe our new single-state SQKD protocol may actually be
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used for this purpose, however a proof of security remains elusive.

Finally, we would like to improve on our mediated protocol. The requirements

on the sever at the moment are practical, though extreme - it would be preferable

to design a protocol which required the server to prepare and measure single qubit

states as opposed to the current Bell states. We have a protocol which appears to

work, however a proof of its unconditional security is still required.

Semi-quantum key distribution asks the question “how quantum does a protocol

need to be in order to gain an advantage over a classical one in cryptographic appli-

cations.” It is of great theoretical interest, but it also has great practical potential.

Indeed, it might lead to systems which require far simpler hardware for end-users. In

the future, if quantum computers become widely available, it will be vital to establish

an infrastructure allowing users to securely establish shared secret keys; semi-quantum

protocols may be the way forward in this direction and our work in this dissertation

greatly contributes to this effort.
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