Semi-Quantum Key Distribution: Protocols, Security Analysis, and New Models

Walter O. Krawec

Ph.D. Defense April 15, 2015

Quantum Key Distribution (QKD)

- Allows two users Alice (A) and Bob (B) to establish a shared secret key
- Secure against an all powerful adversary
 - Does not require any computational assumptions
 - Attacker bounded only by the laws of physics
 - Something that is not possible using classical means only
- Accomplished using a quantum communication channel

Quantum Key Distribution

QKD in Practice

- Quantum Key Distribution is here already
- Several companies produce commercial QKD equipment
 - MagiQ Technologies in NY
 - id Quantique in Geneva
 - SeQureNet in Paris
 - Quintessence Labs in Australia
- Have also been used in various applications:
 - In 2007, QKD was used to transmit ballot results for national elections in Switzerland
 - Has also been used to carry out bank transactions

Semi-Quantum Key Distribution

- In 2007, Boyer et al., introduced semi-quantum key distribution (SQKD)
- Now Alice (A) is quantum
- But Bob (B) is limited or "classical"
- Theoretically interesting:
 - "How quantum does a protocol need to be in order to gain an advantage over a classical one?"
- Practically interesting:
 - B's "lab" may require less complicated hardware
- Requires a two-way quantum communication channel

Semi-Quantum Key Distribution

SQKD Security

- Prior to our work, there were many different SQKD protocols developed
- However, none were proven unconditionally secure
- Instead, only weak notions of security were proven
 - e.g., no correlation established between adversary information gain and disturbance
 - or they were proven secure assuming the attacker was limited in some way
- Our work is the first to provide full security proofs for SQKD protocols using the state of the art definitions.

Our Contributions

- A) We developed a set of *tools* that may be used to better *analyze the* security of certain SQKD protocols (Krawec, 2014)
 - These tools may be used to prove the unconditional security of several SQKD protocols – previously an open question
- B) We developed a new single-state SQKD protocol
 - First semi-quantum protocol which allows X-basis qubits to contribute towards the secret key (Krawec, 2014)
 - Also, our previous results can be applied to prove its unconditional security (Krawec and Nicolosi, in preparation)
- C) We developed a new type of semi-quantum protocol: a *mediated* semi-quantum key distribution protocol (Krawec, 2015)
 - Allows two **classical** users to establish a secret key with the help of an **untrusted quantum server**

Background

Bits vs. Qubits

- Classical Bits:
 - May be 0 or 1
 - Can be read at any time
 - Can be copied
- Quantum Bits (qubits)
 - May be $|0\rangle$, $|1\rangle$, or a *superposition* of both
 - Reading a qubit (called measuring) can destroy it and produce random output
 - Cannot copy a qubit

Qubits

- Qubits are modeled mathematically using a two-dimensional complex vector space
- Thus, any arbitrary qubit is:

$$|q>=\begin{pmatrix} a\\b \end{pmatrix}$$

- Here, a and b are complex numbers
- Normalized: $|a|^2 + |b|^2 = 1$

Preparing and Measuring

- Many ways to send (prepare) a qubit
 - May prepare using any orthonormal basis of C²
- Many ways to read (*measure*) a qubit
 - May read in any orthonormal basis of C²
- If you prepare and measure in the same basis, result is deterministic
- Otherwise it is random and original qubit "collapses" to the observed state

 Correct Basis:

 Wrong Basis:

Bases

• Two important (orthonormal) bases we will use are the *computational Z basis* and the *Hadamard X basis*:

$$-Z = \{|0\rangle, |1\rangle\}$$
 $X = \{|+\rangle, |-\rangle\}$

$$|0> = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1> = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$|+> = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad |-> = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

Measuring a Qubit

$$Z = \{|0\rangle, |1\rangle\} X = \{|+\rangle, |-\rangle\}$$

Measuring a Qubit

$$Z = \{|0\rangle, |1\rangle\} X = \{|+\rangle, |-\rangle\}$$

Measuring a Qubit

$$Z = \{|0\rangle, |1\rangle\} X = \{|+\rangle, |-\rangle\}$$

Quantum and Semi-Quantum Key Distribution

BB84 (Bennett and Brassard, 1984)

 $Z = \{|0\rangle, |1\rangle\} X = \{|+\rangle, |-\rangle\}$

Alice

Key:	0	1	1	0
X or Z	Z	X	Z	Z
Qubit	0>	->	1>	0>

Bob

X or Z	Z	X	X	Z
Result	0>	->	+>	0>
Key	0	1	0	0

Use? Y Y N Y

- A picks a random key bit and basis; based on her choice she sends one of |0>, |1>, |+>, or |->.
- B picks a random basis Z or X and measures
- Using an *authenticated classical channel*, A and B inform each other of their basis choice
- If they use the same basis, they use this iteration to contribute towards their *raw key*
- A and B the run an *Error*Correcting protocol and a 18

 Privacy Amplification protocol

Other QKD Protocols

- Several other QKD protocols have been developed including:
 - Six-state BB84 (Bennett et al., 1984)
 - Three-state BB84 (Fung and Lo, 2006)
 - SARG04 (Scarani, et al., 2004)
 - B92 (Bennett, 1992)

- ...

 These protocols have been analyzed extensively and we have good bounds on their security

Semi-Quantum Key Distribution

Semi-Quantum Key Distribution: Classical Bob

- Semi-Quantum Key Distribution (SQKD), introduced in (Boyer et al., 2007) requires one of the users (typically Bob) to be *classical* or *semi-quantum*:
- B may Measure and Resend
 - The incoming qubit is measured in the Z basis
 - B then resends a qubit based on this result
 - e.g., if he measures |1>, he sends |1> back to A
- B may Reflect
 - The incoming qubit is ignored, and "bounced" back to A (B learns nothing about the qubit's state)
 - The qubit leaves B's lab undisturbed

Semi-Quantum Key Distribution

SQKD Security

- The all-powerful attacker Eve will capture and attack every qubit sent (in both directions)
- This attack will *entangle* the qubit with E's private quantum memory
 - This memory is modeled mathematically as an ndimensional C vector space.

Security

- E's attack creates noise in the channel
- The more "invasive" her attack, the more knowledge she gains
- But, the more noise she creates
- Goal: Bound the maximal amount of information the attacker can gain given a certain noise level
- Question: How much noise is too much?

Robustness

- Due to the two-way quantum channel, past security analyses of semi-quantum protocols have been limited
- Most protocols are only proven to be robust
 - Any attack can be detected with non-zero probability
- Says nothing about how much noise is too much
- Until our work in this dissertation, all SQKD protocols stated "A and B abort if the error rate is higher than some threshold," but no one knew what this threshold was...

A) Analyzing the Security of SQKD Protocols

Attack Models

- Collective Attacks
 - E performs the same attack each iteration, applying a *unitary* operator acting on the qubit and E's private quantum memory (an n-dimensional complex vector space)
 - E is allowed to measure at any time of her choosing

Attack Models

- General Attacks
 - Eve is allowed to perform different attacks each iterations (perhaps based on the result of an attack on a previous iteration)
- Ultimate goal: prove a QKD protocol is secure against general attacks
- However, (Renner, 2007) proved that security against collective attacks implies security against general attacks
- Thus, it is sufficient to prove security against collective attacks
 - Still difficult in the SQKD setting due to E's ability to attack a qubit twice!

Single-State SQKD Protocols

- A single-state SQKD protocol, first introduced in (Zou et al., 2009) is one where B is classical and A can only prepare one type of qubit each iteration typically |+>
 - A, however, can still measure in either Z or X basis

Single-State SQKD Protocols

- A *collective attack* is a pair (U, V) of unitary attack operators (both of which act on the qubit and E's private n-dimensional quantum memory) which Eve will use on each iteration
 - U is used in the forward direction $(A \rightarrow B)$
 - V is used in the reverse direction $(B \rightarrow A)$

Restricted Collective Attacks

- We define a restricted collective attack to be a pair (b, U')
 - b is a "bias" parameter in the range $[-\frac{1}{2}, \frac{1}{2}]$, used by E to bias B's measurement results
 - U' is a unitary attack operator used in the reverse direction $(B \rightarrow A)$

31

First Theorem

Theorem: For any single-state SQKD protocol, let (U,V) be a collective attack. Then, there exists an equivalent restricted collective attack (b,U') where:

- E will bias Bob's measurement results using bias parameter "b"
 - B will measure |0> with probability ½ + b
 - B will measure $|1\rangle$ with probability $\frac{1}{2}$ b
- E will then use unitary attack operator U' on the returning qubit.

Thus, there is no advantage for E in using a more complicated collective attack.

First Theorem

• Thus, for any single state SQKD protocol, it is sufficient to consider only restricted collective attacks

(Krawec, 2014)

(Renner, 2007)

Restricted Collective ⇒ Collective Attacks ⇒ General Attacks

Easier to Analyze Mathematically

Harder to Analyze Mathematically

B) A New Single-State SQKD Protocol

New Single-State SQKD Protocol

- We designed a new single-state SQKD protocol
- This is the first semi-quantum protocol which allows X-basis states (|+> and |->) to contribute to the raw key
 - In all prior protocols, they were used only to verify the security of the quantum channel.
- Since it is a single-state protocol, our previous results apply, allowing us to preform a more rigorous proof of security

The Protocol

- A sends |+>
- B chooses to **measure and resend** or **reflect** his key bit is based on his *action*, not on his measurement result
 - If he measures and resends, his key bit is 0
 - (If he measures |1>, the iteration is discarded)
 - If he reflects, his key bit is 1
- A measures in the Z or X basis to determine which action B chose
 - If she measures in the Z basis, her key bit is 1
 - (If she measures |0> the iteration is discarded)
 - If she measures in the X basis, her key bit is 0
 - (If she measures |+> the iteration is discarded)

New Protocol: The Idea

- Alice always sends |+> to Bob.
- Bob chooses to measure and resend or reflect
 - His key bit is based on his action not his measurement result

• Alice must determine what B did:

Α	В
+>	E e>
₩ X	Tu' Z
Z	→ — — — — authenticated channel

	Measure 0> (key=0)	Reflect (key=1)
Z (key=1)	0>	0> or 1>
X (key=0)	+> or ->	+>

New Protocol: The Idea

- Alice always sends |+> to Bob.
- Bob chooses to measure and resend or reflect
 - His key bit is based on his action not his measurement result

• Alice must determine what B did:

Α	E	3
+>	E e>	y
X	memory U')
Z	authenticated channel	

	Measure 0> (key=0)	Reflect (key=1)
Z (key=1)	0>	0> or(1>)
X (key=0)	+> OI(->	+>

New Single-State SQKD Protocol

Alice

C	ubit	+>	+>	+>	+>
			Bob		

M or R	M: 0>	R	M: 1>	R
Key	0	1	n/a	1
Output	0>	+>	n/a	+>

Alice

X or Z	X	Z	n/a	X
Key	0	1	n/a	0
Result	->	1>	n/a	+>

Use?	Υ	Y	N	N
------	---	---	---	---

- A sends |+>
- B chooses to measure $(\text{key}_{\text{R}}=0)$ or reflect $(\text{key}_{\text{R}}=1)$
 - If he measures |1> this iteration is discarded
- Alice measures in the Z $(\text{key}_{\Delta}=1) \text{ or } X (\text{key}_{\Delta}=0)$ basis
 - If she measures |+> or |0> this iteration is discarded 39

Security

- Since this is a single-state SQKD protocol, our previous results apply
 - In particular, we only need to consider restricted collective attacks (b,U)
- We can now use this previous result to prove our new protocol's unconditional security

QKD Security: Key Rate

- After communicating with qubits, A and B have a *raw key* of size N bits
- Next, they run an error correcting protocol and a privacy amplification protocol
- This results in a secure key of size $l_v(N) < N$ bits
 - $l_{v}(N)$ may be zero
- Question: Given the error rate of the raw key, what is $l_{v}(N)$?
- Question: When is $l_v(N) = 0$?

Key Rate

• Let:

 Γ_{ν} = { all attacks (b, U') which conform to the observed statistics ν }

• It was shown in (Renner et al., 2005) that:

$$l_{\mathbf{v}}(N) \approx Nr(\mathbf{v})$$

$$r(\mathbf{v}) = \inf_{(b,U') \in \Gamma_{\mathbf{v}}} (S(A|E_{(b,U')}) - H(A|B)) \le 1$$

S: von-Neumann Entropy, H: Shannon Entropy

- Thus, r() is a function of certain observed parameters in particular the error rate
- Our goal now is to lower-bound the key rate...

Proof of Security: First Step

• First, we fix an attack operator U' and determine a bound on how much the bias parameter "b" alters the key rate. That is, we find f(b) so that:

$$|r(0,U')-r(b,U')| \leq f(b)$$

43

Proof of Security: Second Step

- Let Q be the probability that $|i\rangle$ flips to $|1-i\rangle$
- Let Q_x be the probability that |+> flips to a |->
- Now, we find a lower-bound for $r(0, Q, Q_x) = \inf r(0, U)$
 - That is, what is the key rate if E does not attack the first channel $(A \rightarrow B)$?
 - Now, the protocol becomes a uni-directional one
- In this case, we prove $r(0,Q,Q_x)$ is lower-bounded by the keyrate of the B92 protocol (Bennett, 1992).
- That is, we can find a function $g(Q, Q_x)$ such that:

$$r(0,Q,Q_X) \ge g(Q,Q_X)$$

Proof of Security: Third Step

• Finally, we combine everything to derive:

$$l(N) \approx N \cdot r(b, Q, Q_X)$$

$$r(b, Q, Q_X) \ge g(Q, Q_X + 2|b|) - f(b),$$

where:

f(b) was found in step 1 $g(Q, Q_X)$ is the key rate of B92 (step 2)

A Lower-Bound on the Key Rate

Q is the probability that a |i> flips to a |1-i> Q_x is the probability that a |+> flips to a |-> Above, we consider the case when Q = Q_x

C) Mediated Semi-Quantum Key Distribution

Mediated SQKD: The Setting

- With SQKD protocols, one user, Bob, is classical while the other is fully quantum.
- What if both A and B are classical?

Related Work: Fully Quantum

- There have been several *multi-user* QKD protocols developed
- Protocols where both A and B are fully quantum, but rely on an untrusted quantum server
- Not all have complete security proofs

Related Work: Semi-Quantum

- (Zhou et al., 2009) developed a protocol where a fully quantum, and *fully trusted*, A established a key with multiple classical users
- (Lu and Cai, 2008) developed a protocol where two classical users could establish a key using the help of a quantum server
 - However, this protocol required a *private quantum channel* connecting A and B, outside the view of the server
 - Also assumed the server performed the protocol correctly – that is, the server is assumed to be semi-honest

Two-Qubit Systems

- Two qubits are modeled mathematically using a 2²=4-dimensional C vector space
- Two important bases we consider:

Bell:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle,$$

$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}}|00\rangle - \frac{1}{\sqrt{2}}|11\rangle,$$

$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle,$$

$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}|01\rangle - \frac{1}{\sqrt{2}}|10\rangle,$$
51

Our Protocol: Security

- We consider two scenarios:
 - First, the Server is semi-honest. In this case, we prove that our protocol can withstand up to a 19.9% error rate.
 - Second (worst case), the Server is adversarial. In this case, we prove our protocol can withstand up to 10.65% noise.
- Proof requires different techniques though we do use a result similar to our first Theorem along the way...

Security: Honest Server

$$r \ge 1 - h(Q^2) - Q^2 - 2(1 - Q)\sqrt{\frac{1}{2}Q - \frac{3}{4}Q^2}$$

Security: Adversarial Server

$$r \ge 1 - h(2Q^2) - 2(\sqrt{1 - Q}(Q + \sqrt{p_W}) + Q^2)$$

Summary

Summary

- A) We have developed new analytical and proof techniques which can be applied to future SQKD protocols
 - We have also applied these techniques to the security proofs of two different SQKD protocols
 - This is the first time a proof of unconditional security has been achieved for a semi-quantum protocol.
 - All prior SQKD protocol papers simply stated "A and B must abort if the error rate is greater than some user-defined amount"

Summary

- B) We have developed new semi-quantum protocols with unique features
 - We also leveraged our previous security results to prove their unconditional security
- C) We have shown it is possible for two limited classical users to establish a secret key with the help of an untrusted quantum server

We have proven that even with limited, classical users, protocols exist with security comparable to fully quantum ones.

References

- C.H. Bennett and G. Brassard, 1984, Quantum cryptography: Public key distribution and coin tossing. in Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing. Vol 175, NY.
- C.H. Bennett, 1992, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68:3121-3124.
- M. Boyer, D. Kenigsberg, and T. Mor, 2007, Quantum Key Distribution with classical bob, in ICQNM.
- C.H.F. Fung and H.K. Lo, 2006, Security proof of a three-state quantum key distribution protocol without rotational symmetry. Phys. Rev. A, 74:042342.
- W.O. Krawec, 2014, Restricted attacks on semi-quantum key distribution protocols. Quantum Information Processing, 13(11):2417-2436.
- W.O. Krawec, 2015, Mediated semi-quantum key distribution. Phys. Rev. A. 91 032323.
- W.O. Krawec, and A.R. Nicolosi, in preparation, Effects of bias on the key-rate 62 of certain single-state semi-quantum key distribution protocols.

References (cont.)

- H. Lu and Q.-Y. Cai, 2008, Quantum key distribution with classical Alice, Int. J. Quantum Information 6, 1195.
- R. Renner, N. Gisin, and B. Kraus, 2005, Information-theoretic security proof for QKD protocols. Phys. Rev. A, 72:012332.
- R. Renner, 2007, Symmetry of large physical systems implies independence of subsystems, Nat. Phys. 3, 645.
- V. Scarani, A. Acin, G. Ribordy, and N. Gisin, 2004, Phys. Rev. Lett. 92, 057901.
- Z. Xian-Zhou, G. Wei-Gui, T. Yong-Gang, R. Zhen-Zhong, and G. Xiao-Tian, 2009, Quantum key distribution series network protocol with m-classical bobs, Chin. Phys. B 18, 2143.
- Xiangfu Zou, Daowen Qiu, Lvzhou Li, Lihua Wu, and Lvjun Li, 2009, Semiquantum key distribution using less than four quantum states. Phys. Rev. A, 79:052312.

Publications while at Stevens

- Security proof of a semi-quantum key distribution protocol. *To appear, proc. IEEE ISIT 2015 (Hong Kong)*.
- Mediated semi-quantum key distribution. Phys. Rev. A. 91 032323, 2015.
- History Dependent Quantum Walk on the Cycle with an Unbalanced Coin. To appear Physica A; pre-print available online: arXiv:1411.6298
- Security in the Semi-Quantum Setting. Abstract presented at the AMS/MAA Joint Math Meetings, San Antonio TX. January 2015
- Restricted Attacks on Semi-Quantum Key Distribution Protocols. Quantum Information Processing: 13(11), pages 2417-2436 (2014)
- An Algorithm for Evolving Multiple Quantum Operators for Arbitrary Quantum Computational Problems. Proc. GECCO Comp. 2014 (Vancouver, BC, Canada)
- Using Evolutionary Techniques to Analyze the Security of Quantum Key Distribution Protocols. Proc. GECCO Comp. 2014 (Vancouver, BC, Canada)
- n-Player Impartial Combinatorial Games with Random Players. to appear Theoretical Computer Science
- Regarding Modular Multiplicative Graphs. Graph Theory Notes of NY LXIV, pages 45-48, May 2013
- On the Emergent Behaviors of a Robot Controlled by a Real-Time Evolving Neural Network. Proc. of Artificial Life 13, pages 364-371, 2012. (East Lansing, MI)

Thank you! Questions?