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Quantum Key Distribution (QKD)

● Allows two users – Alice (A) and Bob (B) – to 
establish a shared secret key

● Secure against an all powerful adversary

– Does not require any computational 
assumptions

– Attacker bounded only by the laws of physics

– Something that is not possible using classical 
means only

● Accomplished using a quantum communication 
channel
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Quantum Key Distribution
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QKD in Practice

● Quantum Key Distribution is here already

● Several companies produce commercial QKD equipment

– MagiQ Technologies in NY

– id Quantique in Geneva

– SeQureNet in Paris

– Quintessence Labs in Australia
● Have also been used in various applications:

– In 2007, QKD was used to transmit ballot results 
for national elections in Switzerland

– Has also been used to carry out bank transactions
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Semi-Quantum Key Distribution

● In 2007, Boyer et al., introduced semi-quantum key 
distribution (SQKD)

● Now Alice (A) is quantum

● But Bob (B) is limited or “classical”

● Theoretically interesting:

– “How quantum does a protocol need to be in order 
to gain an advantage over a classical one?”

● Practically interesting:

– B's “lab” may require less complicated hardware
● Requires a two-way quantum communication channel
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Semi-Quantum Key Distribution



7

SQKD Security

● Prior to our work, there were many different SQKD 
protocols developed

● However, none were proven unconditionally secure

● Instead, only weak notions of security were proven

– e.g., no correlation established between 
adversary information gain and disturbance

– or they were proven secure assuming the 
attacker was limited in some way

● Our work is the first to provide full security proofs for 
SQKD protocols using the state of the art definitions.
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Our Contributions

A)We developed a set of tools that may be used to better analyze the 
security of certain SQKD protocols (Krawec, 2014)

– These tools may be used to prove the unconditional security 
of several SQKD protocols – previously an open question

B) We developed a new single-state SQKD protocol

– First semi-quantum protocol which allows X-basis qubits to 
contribute towards the secret key (Krawec, 2014)

– Also, our previous results can be applied to prove its 
unconditional security (Krawec and Nicolosi, in preparation)

C) We developed a new type of semi-quantum protocol: a mediated 
semi-quantum key distribution protocol (Krawec, 2015)

– Allows two classical users to establish a secret key with the 
help of an untrusted quantum server
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Background
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Bits vs. Qubits

● Classical Bits:
– May be 0 or 1

– Can be read at any time

– Can be copied

● Quantum Bits (qubits)
– May be |0>, |1>, or a superposition of both

– Reading a qubit (called measuring) can destroy 
it and produce random output

– Cannot copy a qubit
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Qubits

● Qubits are modeled mathematically using a 
two-dimensional complex vector space

● Thus, any arbitrary qubit is:

● Here, a and b are complex numbers
● Normalized: |a|2 + |b|2 = 1

| q >=(a
b)
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Preparing and Measuring

● Many ways to send (prepare) a qubit

– May prepare using any orthonormal basis of C2

● Many ways to read (measure) a qubit

– May read in any orthonormal basis of C2

● If you prepare and measure in the same basis, result is 
deterministic

● Otherwise it is random and original qubit “collapses” to the 
observed state
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Bases

● Two important (orthonormal) bases we will use 
are the computational Z basis and the 
Hadamard X basis:

– Z = {|0>, |1>}    X = {|+>, |->}

| 0 >=(10) | 1>=(01)
|+>= 1

√2 (11) |−>= 1

√2 ( 1
−1)
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Measuring a Qubit

Z = {|0>, |1>}  X = {|+>, |->}
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Measuring a Qubit

Z = {|0>, |1>}  X = {|+>, |->}
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Measuring a Qubit

Z = {|0>, |1>}  X = {|+>, |->}
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Quantum and Semi-Quantum Key 
Distribution
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BB84 (Bennett and Brassard, 1984)

● A picks a random key bit and 
basis; based on her choice she 
sends one of |0>, |1>, |+>, or |->.

● B picks a random basis Z or X 
and measures

● Using an authenticated classical 
channel, A and B inform each 
other of their basis choice

● If they use the same basis, they 
use this iteration to contribute 
towards their raw key

● A and B the run an Error 
Correcting protocol and a 
Privacy Amplification protocol

Alice
Key: 0 1 1 0

X or Z Z X Z Z

Qubit |0> |-> |1> |0>

Bob
X or Z Z X X Z

Result |0> |-> |+> |0>

Key 0 1 0 0

Use? Y Y N Y

Z = {|0>, |1>}  X = {|+>, |->}
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Other QKD Protocols

● Several other QKD protocols have been developed 
including:

– Six-state BB84 (Bennett et al., 1984)

– Three-state BB84 (Fung and Lo, 2006)

– SARG04 (Scarani, et al., 2004)

– B92 (Bennett, 1992)

– …
● These protocols have been analyzed extensively and 

we have good bounds on their security
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Semi-Quantum Key Distribution
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Semi-Quantum Key Distribution: 
Classical Bob

● Semi-Quantum Key Distribution (SQKD), introduced in (Boyer 
et al., 2007) requires one of the users (typically Bob) to be 
classical or semi-quantum:

● B may Measure and Resend

– The incoming qubit is measured in the Z basis

– B then resends a qubit based on this result

– e.g., if he measures |1>, he sends |1> back to A
● B may Reflect

– The incoming qubit is ignored, and “bounced” back to 
A (B learns nothing about the qubit's state)

– The qubit leaves B's lab undisturbed
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Semi-Quantum Key Distribution
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SQKD Security

● The all-powerful attacker Eve will capture and attack every 
qubit sent (in both directions)

● This attack will entangle the qubit with E's private quantum 
memory

– This memory is modeled mathematically as an n-
dimensional C vector space.
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Security

● E's attack creates noise in the channel

● The more “invasive” her attack, the more knowledge 
she gains

● But, the more noise she creates

● Goal: Bound the maximal amount of information the 
attacker can gain given a certain noise level

● Question: How much noise is too much?
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Robustness

● Due to the two-way quantum channel, past security 
analyses of semi-quantum protocols have been limited

● Most protocols are only proven to be robust

– Any attack can be detected with non-zero 
probability

● Says nothing about how much noise is too much

● Until our work in this dissertation, all SQKD protocols 
stated “A and B abort if the error rate is higher than 
some threshold,” but no one knew what this threshold 
was...



26

A) Analyzing the Security of SQKD 
Protocols
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Attack Models
● Collective Attacks

– E performs the same attack each iteration, applying a unitary 
operator acting on the qubit and E's private quantum 
memory (an n-dimensional complex vector space)

– E is allowed to measure at any time of her choosing
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Attack Models

● General Attacks

– Eve is allowed to perform different attacks each 
iterations (perhaps based on the result of an attack on 
a previous iteration)

● Ultimate goal: prove a QKD protocol is secure against general 
attacks

● However, (Renner, 2007) proved that security against collective 
attacks implies security against general attacks

● Thus, it is sufficient to prove security against collective attacks

– Still difficult in the SQKD setting due to E's ability to 
attack a qubit twice!
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Single-State SQKD Protocols

● A single-state SQKD protocol, first introduced in (Zou 
et al., 2009) is one where B is classical and A can only 
prepare one type of qubit each iteration - typically |+>

– A, however, can still measure in either Z or X basis
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Single-State SQKD Protocols

● A collective attack is a pair (U, V) of unitary attack operators 
(both of which act on the qubit and E's private n-dimensional 
quantum memory) which Eve will use on each iteration

– U is used in the forward direction (A → B)

– V is used in the reverse direction (B → A)
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Restricted Collective Attacks
● We define a restricted collective attack to be a pair (b, U')

– b is a “bias” parameter in the                                   
range [-½, ½], used by E to                                    
bias B's measurement results

– U' is a unitary attack operator used in the reverse 
direction (B → A)
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First Theorem

Theorem: For any single-state SQKD protocol, let (U,V) 
be a collective attack.  Then, there exists an equivalent 
restricted collective attack (b,U') where:

● E will bias Bob's measurement results using bias 
parameter “b”

● B will measure |0> with probability ½ + b
● B will measure |1> with probability ½ – b

● E will then use unitary attack operator U' on the 
returning qubit.

Thus, there is no advantage for E in using a more 
complicated collective attack.
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First Theorem

● Thus, for any single state SQKD protocol, it is 
sufficient to consider only restricted collective 
attacks

Restricted Collective⇒Collective Attacks⇒General Attacks

Easier to Analyze
Mathematically

Harder to Analyze
Mathematically

(Krawec, 2014) (Renner, 2007)
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B) A New Single-State SQKD Protocol
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New Single-State SQKD Protocol

● We designed a new single-state SQKD protocol

● This is the first semi-quantum protocol which allows 
X-basis states (|+> and |->) to contribute to the raw 
key

– In all prior protocols, they were used only to 
verify the security of the quantum channel.

● Since it is a single-state protocol, our previous results 
apply, allowing us to preform a more rigorous proof of 
security
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The Protocol

● A sends |+>

● B chooses to measure and resend or reflect – his key bit is based on 
his action, not on his measurement result

– If he measures and resends, his key bit is 0

● (If he measures |1>, the iteration is discarded)
– If he reflects, his key bit is 1

● A measures in the Z or X basis to determine which action B chose

– If she measures in the Z basis, her key bit is 1

● (If she measures |0> the iteration is discarded)
– If she measures in the X basis, her key bit is 0

● (If she measures |+> the iteration is discarded)
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New Protocol: The Idea

● Alice always sends |+> to Bob.

● Bob chooses to measure and resend or reflect

– His key bit is based on his action not his 
measurement result

● Alice must determine what B did: Measure 
|0>

(key=0)

Reflect

(key=1)

Z
(key=1)

|0> |0> or |1>

X
(key=0)

|+> or |-> |+>
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New Protocol: The Idea

● Alice always sends |+> to Bob.

● Bob chooses to measure and resend or reflect

– His key bit is based on his action not his 
measurement result

● Alice must determine what B did: Measure 
|0>

(key=0)

Reflect

(key=1)

Z
(key=1)

|0> |0> or |1>

X
(key=0)

|+> or |-> |+>
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New Single-State SQKD Protocol

Alice

Qubit |+> |+> |+> |+>

Bob

M or R M:|0> R M:|1> R

Key 0 1 n/a 1

Output |0> |+> n/a |+>

Alice
X or Z X Z n/a X

Key 0 1 n/a 0

Result |-> |1> n/a |+>

Use? Y Y N N

● A sends |+>

● B chooses to measure 
(key

B
=0) or reflect (key

B
=1)

– If he measures |1> 
this iteration is 
discarded

● Alice measures in the Z 
(key

A
=1) or X (key

A
=0) 

basis

– If she measures |+> or 
|0> this iteration is 
discarded
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Security

● Since this is a single-state SQKD protocol, our previous 
results apply

– In particular, we only need to consider restricted 
collective attacks (b,U)

● We can now use this previous result to prove our new 
protocol's unconditional security
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QKD Security: Key Rate

● After communicating with qubits, A and B have a raw 
key of size N bits

● Next, they run an error correcting protocol and a 
privacy amplification protocol

● This results in a secure key of size l
v
(N) < N bits

– l
v
(N) may be zero

● Question: Given the error rate of the raw key, what is 
l
v
(N)?

● Question: When is l
v
(N) = 0?
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Key Rate

● Let:

● It was shown in (Renner et al., 2005) that:

● Thus, r() is a function of certain observed parameters – in 
particular the error rate

● Our goal now is to lower-bound the key rate...

lν(N )≈Nr (ν)

r (ν)=inf (b ,U ' )∈Γν
(S (A | E (b ,U ' ))−H (A | B))≤1

S: von-Neumann Entropy , H: Shannon Entropy

Γν={all attacks (b ,U ' )which conform to the observed statistics ν}
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Proof of Security: First Step
● First, we fix an attack operator U' and determine a bound on 

how much the bias parameter “b” alters the key rate.  That is, 
we find f(b) so that:

| r (0,U ' )−r (b ,U ' ) |≤ f (b)
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Proof of Security: Second Step

● Let Q be the probability that |i> flips to |1-i>

● Let Q
X
 be the probability that |+> flips to a |->

● Now, we find a lower-bound for r(0, Q, Q
X
) = inf r(0,U)

– That is, what is the key rate if E does not attack the first 
channel (A → B)?

– Now, the protocol becomes a uni-directional one

● In this case, we prove r(0,Q,Q
X
) is lower-bounded by the key-

rate of the B92 protocol (Bennett, 1992).

● That is, we can find a function g(Q, Q
X
) such that:

r (0,Q ,Q X )≥g (Q ,Q X )
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Proof of Security: Third Step

● Finally, we combine everything to derive:

l (N )≈N⋅r (b ,Q ,Q X )

r (b ,Q ,Q X )≥g (Q ,Q X+2 |b |)− f (b) ,

where :

f (b) was found in step 1

g (Q ,Q X )  is the key rate of B92 (step 2)
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A Lower-Bound on the Key Rate

Q is the probability that a |i> flips to a |1-i>
Q

X
 is the probability that a |+> flips to a |->

Above, we consider the case when Q = Q
X
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C) Mediated Semi-Quantum Key 
Distribution
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Mediated SQKD: The Setting

● With SQKD protocols, one user, Bob, is 
classical while the other is fully quantum.

● What if both A and B are classical?
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Related Work: Fully Quantum

● There have been several multi-user QKD 
protocols developed

● Protocols where both A and B are fully 
quantum, but rely on an untrusted quantum 
server

● Not all have complete security proofs
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Related Work: Semi-Quantum

● (Zhou et al., 2009) developed a protocol where a fully 
quantum, and fully trusted, A established a key with 
multiple classical users

● (Lu and Cai, 2008) developed a protocol where two 
classical users could establish a key using the help of a 
quantum server

– However, this protocol required a private quantum 
channel connecting A and B, outside the view of 
the server

– Also assumed the server performed the protocol 
correctly – that is, the server is assumed to be 
semi-honest
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Two-Qubit Systems

● Two qubits are modeled mathematically using a 22=4-
dimensional C vector space

● Two important bases we consider:

Bell:

|ϕ+ >= 1

√2
|00>+ 1

√2
|11>,

|ϕ− >= 1

√2
|00>− 1

√2
|11>,

| ψ+ >= 1

√2
|01>+ 1

√2
|10> ,

| ψ− >= 1

√2
|01>− 1

√2
|10> ,

Computational:
| 00> , |01> , |10> , | 11>
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Alice BobServer

Step 1: |ϕ+ >

|ϕ+ >= 1

√2
| 00>+ 1

√2
|11>
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Step 1:

Step 2:

|ϕ+ >

Alice BobServer |ϕ+ >= 1

√2
| 00>+ 1

√2
|11>
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Step 1:

Step 2:

Step 3:

|ϕ+ >

| 00 >

|00 >|ϕ+ >

Alice BobServer |ϕ+ >= 1

√2
| 00>+ 1

√2
|11>
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Measure and ResendReflect

|ϕ+ >|ϕ+ >

|ϕ+ >|ϕ+ > | 00 > |00 >

|ϕ+ > | 00 >
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Our Protocol: Security

● We consider two scenarios:

– First, the Server is semi-honest.  In this case, we 
prove that our protocol can withstand up to a 
19.9% error rate.

– Second (worst case), the Server is adversarial.  In 
this case, we prove our protocol can withstand up 
to 10.65% noise.

● Proof requires different techniques – though we do use a 
result similar to our first Theorem along the way...
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Security: Honest Server

r≥1−h (Q2)−Q2−2(1−Q)√ 1
2

Q−3
4

Q2



58

Security: Adversarial Server

r≥1−h (2Q2 )−2 (√1−Q (Q+√ pW )+Q2)
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Summary
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Summary

A) We have developed new analytical and proof 
techniques which can be applied to future SQKD protocols

– We have also applied these techniques to the 
security proofs of two different SQKD protocols

– This is the first time a proof of unconditional 
security has been achieved for a semi-quantum 
protocol.

– All prior SQKD protocol papers simply stated “A 
and B must abort if the error rate is greater than 
some user-defined amount”
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Summary

B) We have developed new semi-quantum protocols 
with unique features

– We also leveraged our previous security results 
to prove their unconditional security

C) We have shown it is possible for two limited 
classical users to establish a secret key with the help of 
an untrusted quantum server

We have proven that even with limited, classical 
users, protocols exist with security comparable to 

fully quantum ones.
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Thank you! Questions?
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