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Abstract

In this paper, we investigate single state, semi-quantum key distri-
bution protocols. These are protocols whereby one party is limited to
measuring only in the computational basis, while the other, though capa-
ble of measuring in both computational and Hadamard bases, is limited
to preparing and sending only a single, publicly known qubit state. Such
protocols rely necessarily on a two-way quantum communication channel
making their security analysis difficult. However we will show that, for
single state protocols, we need only consider a restricted attack operation
by Eve. We will also describe a new single state protocol which permits
“reflections” to carry information and use our results concerning restricted
attacks to show its robustness.

1 Introduction

It is by now well known that two parties, whom we shall refer to throughout as
Alice (A) and Bob (B), may agree, via the use of a quantum communication
channel, on a shared secret key which is secure against even an all powerful
active adversary, customarily referred to as Eve (E). The security of such
quantum key distribution (QKD) protocols is based not upon computational
assumptions, as is the case, for instance, with classical public key cryptology,
but instead on physical assumptions (Eve being bounded in power only by the
laws of physics). Protocols such as BB84 [1], SARG04 [2], and others [3] have
been analyzed extensively of late and exact proofs of their unconditional security
have been constructed. These QKD protocols, and others like them, assume
that both A and B are permitted to perform various quantum operations. For
instance, in BB84, it is assumed that both parties may prepare and measure
qubits in either the computational “Z” basis (|0〉 , |1〉) or the Hadamard “X”
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basis (|+〉 := 1√
2
(|0〉 + |1〉), |−〉 := 1√

2
(|0〉 − |1〉)). Though there have been of

course many various alterations to the assumptions of Alice and Bob, it is still
assumed that they both may perform such “quantum” operations.

Recently however [4, 5] it has been shown possible to construct QKD pro-
tocols where A is allowed to perform quantum operations (e.g., preparing and
measuring in either the Z or X basis) however B is limited to perform “clas-
sical” operations (we will define Bob’s permitted operations shortly). Such a
protocol, which allows quantum A and this limited B to agree on a secret key
is called a semi-quantum key distribution (SQKD) protocol.

SQKD protocols rely on a two-way quantum communication channel (one
that allows a qubit to travel from Alice to Bob, then back again to Alice) and
an authenticated classical public channel. Eve may perform any operation of
her choice on the quantum channel (in both directions); however she may only
listen to, but not tamper with, messages on the authenticated public classical
channel.

Typically, A starts the communication by sending a qubit, prepared in either
the Z or X basis to Bob. Bob then, who is “classical”, may perform one of the
following operations:

1. Measure the qubit in the Z basis and prepare a new qubit in the same Z
basis.

2. Reflect the incoming qubit (learning nothing about it) back to Alice.

A qubit returns to Alice who may then measure in either the Z or X basis.
After repeating this process N times, Alice and Bob attempt to “sift” two
bit strings: infoA and infoB respectively. It is hoped that, after performing
the protocol, their two strings are not only highly correlated, but that Eve has
limited knowledge of them. They may then perform error correction and privacy
amplification to distill a secure secret key for future cryptographic uses.

Due to B’s ability to only work directly with the “0/1” Z basis, he is termed
a “classical” Bob. From this point of view then, SQKD protocols are very
interesting from a theoretical standpoint for they attempt to answer the question
concerning exactly how “quantum” a protocol need be in order to provide the
same benefits as their fully quantum counterparts (e.g., BB84). Whether or
not B is truly classical though is a subject for debate (e.g., he still requires the
ability to reflect or the ability to produce truly random choices); we prefer the
term “semi-quantum”, though we will use the two interchangeably throughout.

Notice that, unlike BB84 which uses a one-way quantum channel, Eve has
two chances to interact with the traveling qubit: once when it is first sent from
Alice to Bob, then again when it is returning from Bob to Alice. This greatly
increases the complexity of the protocol’s analysis. In parenthesis, there have
been some two-way QKD (not using a restricted, classical Bob but instead a
fully quantum B) protocols recently constructed, however, progress has only
recently been made in proving their unconditional security [6, 7], though only
by making various assumptions [7].
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To prove the security of SQKD protocols, the concept of “robustness” was
introduced in [4]. There it was defined that a SQKD protocol is completely
robust if, whenever Eve learns non-zero information on one (or both) of the
info strings, she induces a disturbance in the quantum channel (or a certain
amount of noise) which, with non-zero probability, Alice or Bob may detect.
Though we will not concern ourselves with it, they also defined the notion of
partially robust whereby Eve may learn some limited information on one of
the info strings without inducing any detectable error. In this paper however,
we only are interested in completely robust protocols and, whenever we write
“robust” we mean “completely”.

Various other SQKD protocols have been proposed since these first; see for
instance [8, 9, 10, 11]. In [9], a protocol utilizing entangled states was described.
The protocol of [10] introduced the idea of B sending any qubit |r〉 where r may
or may not be based on his measurement result (this was also used in [8]); as
we will show, in the single-state case, this adds some extra complexity to the
security analysis. In [11] a protocol was proposed which did not require the
authenticated channel. The protocols of [8, 12] design robust key distribution
protocols permitting a fully quantum A and several classical parties B,C, . . . to
share a key.

Moving beyond key distribution, [13] introduced a three party secret sharing
protocol permitting a fully quantum A to share a secret with two semi-quantum
users B and C. Their protocol required A to produce GHZ states and was
shown secure against eavesdropping and adversarial B or C (quantum A was,
of course, trusted since she had the secret). Alternative protocols were proposed
in [14, 15, 16]. Security in all these was based on the notion of robustness.

While the first SQKD protocols [4, 5] involved Alice sending, on each iter-
ation, a qubit randomly prepared as either |0〉 , |1〉 , |+〉 , or |−〉, it was recently
shown in [17] (see also the comment [18]) that SQKD protocols exist even if
Alice only prepares a single, publicly known state |+〉 each iteration. Such pro-
tocols are called single state SQKD protocols. Other single state protocols were
developed in [8].

In this paper we will show that, for single state protocols, and assuming
that Bob always resends the same state he measures (as is the case with most
SQKD protocols), the most general attack of Eve, whereby she applies a unitary
operator, interacting with her own private ancilla space, on both channels (using
two different unitary operators UE between Alice and Bob and UF between Bob
and Alice) is equivalent to a restricted attack whereby she prepares a single qubit
state of her choice (however not entangled with her own ancilla) and applies only
a single unitary operator U ′F on the return state (this operator interacts with her
private ancilla). We will show that this result holds also for protocols whereby
Alice sends one of two orthogonal states (chosen probabilistically each iteration)
however it does not necessarily apply when Alice may send one of three or more
states.

Note that, in [8], the authors described a single state SQKD protocol where
B was able to prepare a qubit in the Z basis different from what he measured
(as in [10]). They also claimed, without proof, that, due to this “refresh” of
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the qubit, E’s attack on the first channel is not needed. In our paper, we prove
rigorously that, for single state protocols where B is not allowed to “refresh”
the qubit (i.e., unlike in [8], he must always send |r〉 if he measures |r〉), then
the first attack by E is not entirely necessary (though E may still “bias” the
superposition in the first channel). We also discuss the case when B is allowed
to refresh the qubit.

Our security results apply to any single state protocol and our results may
be useful when deriving equations computing the quantum information E may
hold on the info string. For instance, in [19], the author computed an equation
relating the disturbance caused by E’s attack to the information E may gain
in an individual attack (i.e., an attack where E performs the same operation
each iteration and performs a measurement before A and B’s key is used for
anything - unlike a collective attack where the measurement is performed at any
later time; see [3] for more information on the various attack models commonly
used). Our results could be used to not only simplify their analysis (where they
considered two attack operators); but also could be used to extend their work
to the case of collective attacks and, perhaps, to understand the key rate of a
protocol (see [3, 20]).

In this paper, we will apply our results to the security analysis of a new
single state protocol we devise. This protocol, instead of using the measurement
results to sift an info string, as is the case with all other SQKD protocols (not
only single state) that we are aware of, uses Bob’s actual operation to determine
the bit string. Namely, if B chooses to reflect, this will constitute an info bit
of 0; otherwise if B chooses to measure and resend this will correspond to a
1. Thus this protocol demonstrates for the first time, the possibility of using
reflections and X basis qubits to carry information, even though classical Bob
cannot work directly with such qubits. Prior SQKD protocols simply use the
X basis to measure the noise of the channel.

We point out that the results in this paper concern only the perfect qubit
scenario. We do not consider security involving actual implementation issues.
For instance we do not consider the “photon tagging attack” mentioned in [21].
However, as mentioned in [22], theoretical security proofs in quantum cryptol-
ogy and their practical implementation are often very different, with theoretical
security proofs generally preceding practical ones. This paper focuses only on
the former leaving the latter as interesting future work. We observe that there
are many open questions in the theoretical, perfect qubit setting, such as com-
puting the key rate in the asymptotic scenario [3], to which our results may be
applied.

2 Limited Attack Strategies

Let us recall the general attack strategy used by an eavesdropper (Eve) with a
semi-quantum key distribution protocol. Since these are two-way protocols (that
is, a qubit travels first from Alice to Bob then from Bob to Alice), Eve has two
opportunities to attack the quantum communication. Thus, when proving the
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security of previous semi-quantum protocols, it is assumed that Eve captures
the qubit from Alice (who starts the communication), applies a unitary UE
entangling the qubit with her own personal quantum system, and then forwards
a qubit to Bob. Bob then performs some operation on it (reflecting or measuring
then resending) and returns the result. Eve captures this return qubit and
applies a second unitary operator UF acting not only on Bob’s returned qubit,
but also on Eve’s system (the same system which interacted originally with
Alice’s qubit via UE). In this section, we show this first attack operator is not
necessary for single state protocols.

To help us analyze these protocols, let us expand the underlying quan-
tum system slightly by providing ancilla spaces for both Alice and Bob. That
is, the system over which a SQKD protocol operates is: H := HA ⊗ HT ⊗
HE ⊗ HB . Here, HA and HB are Alice and Bob’s private quantum registers
and may be spanned by such states as |0〉 , |1〉 or, in Bob’s case, additionally
|measure〉 , |reflect〉. These states serve to model the “bookkeeping” that Al-
ice and Bob must perform (e.g., Bob must remember whether he measured or
reflected on any particular iteration). While Bob is semi-quantum and Alice
does not wish to use a quantum memory, the use of these registers is equivalent
to Alice and Bob storing their decisions and measurement outcomes in classical
memory. It is simply, for our purposes, a convenient notational system.
HT is the transit or travel space and is two dimensional (a qubit). At the

start of each iteration, Alice holds HT and prepares a new qubit in this space.
It is then “passed” to Eve who may perform an attack of her choice. Bob is
then given this space and performs one of the permitted “classical” operations
(reflect or measure and resend) at which point it is passed back to Eve who,
after performing a second attack, returns it to Alice who may then make a
measurement.

Finally, HE is Eve’s personal ancilla space.
To analyze Bob’s operations, let ρ be a density operator on H and denote by

BR(ρ) the operation whereby Bob reflects the qubit while recording his choice
in his private quantum register. Denote by BM (ρ) the result of Bob measuring
in the computational basis, recording the result, and resending. Thus:

BR(ρ) = ρ⊗ |reflect〉 〈reflect|B

BM (ρ) = M|0〉ρM|0〉 ⊗ |measure, 0〉 〈measure, 0|B
+ M|1〉ρM|1〉 ⊗ |measure, 1〉 〈measure, 1|B ,

where M|i〉 is Bob’s measurement operator, projecting that transit space HT
to |i〉. That is to say, M|i〉 := IA ⊗ |i〉 〈i|T ⊗ IE ⊗ IB where IA is the identity
operator on HA etc.

In the following, we will make a distinction between what we call general
collective attacks and restricted collective attacks. In both cases, we assume
that Eve uses a separate ancilla for each iteration and that she uses the same
attack operators each iteration. That is to say, each iteration of the protocol
acts on a separate copy of the system H. The general collective attack is a
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Figure 1: The top figure is the general collective attack scenario whereby Eve
entangles Alice’s sent qubit |a〉 with her own private ancilla (via the application
of UE) before forwarding to Bob. Afterwards, she applies UF which interacts
with the return qubit and again with her private ancilla. On the bottom is
the restricted collective attack whereby Eve, depending perhaps on a measure-
ment, prepares a new qubit (not entangled with her ancilla) and only applies
a single attack operator U ′F on the return qubit. Both scenarios, under certain
conditions, are equivalent.

strategy whereby Eve applies a unitary operator UE to the qubit traveling from
Alice to Bob; this operator acts on HT ⊗ HE . UF is a unitary operator, also
acting on the joint space HT ⊗HE , applied by Eve on the returning qubit (from
Bob to Alice).

The restricted collective attack however consists only of a single unitary
operator U ′F and a pair of non-negative real numbers α, β such that α2 +β2 = 1.
For this attack, Eve will send the qubit α |0〉+β |1〉 (observe it is not entangled
with her own ancilla) to Bob. When B returns a qubit, she will then apply the
operator U ′F , acting on HT ⊗HE and return a qubit to A.

See Fig. 1 for a pictorial representation of the two attack scenarios.
In both cases, we assume Eve may postpone measurement of her ancilla to

any future time. For instance, she might wish to wait for a cipher text to travel
between A and B before choosing an optimal measurement of her ancilla [3].

Lemma 2.1. If Bob is restricted to operations BR and BM (chosen probabilis-
tically by Bob) and if Alice is restricted to sending either a single qubit state
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|a〉 or randomly choosing from two orthogonal states {|a〉 , |b〉} (all of which is
publicly known), and assuming that Eve’s ancilla state is known to her (that is,
it is in some state |χ〉E which Eve can determine with probability one), then for
every general collective attack, consisting of two unitary operators UE applied
between Alice and Bob and UF applied between Bob and Alice there is an equiv-
alent restricted attack whereby Eve sends a single qubit α |0〉 + β |1〉 and only
applies a single unitary operator U ′F on the returning qubit state. Furthermore
α and β are real and non-negative.

Proof. First assume that Alice only sends a single, publicly known state |a〉.
Then, after interacting with Eve’s first probe UE , the state is of the form |e〉 =
|0, e0〉 + |1, e1〉 where |e0〉 and |e1〉 are vectors (not necessarily normalized or
orthogonal) in HE such that 〈e0|e0〉 + 〈e1|e1〉 = 1. Eve sends to Bob the state
trE(|e〉 〈e|).

Bob will then, with probability pR perform operation BR; otherwise with
probability pM = 1 − pR, he will perform operation BM . After B returns the
qubit to E, we find that the state of the system to be:

ρ = pR |e〉 〈e| ⊗ σ(R)
B

+ pM

(
M|0〉 |e〉 〈e|M|0〉 ⊗ σ

(M,0)
B +M|1〉 |e〉 〈e|M|1〉 ⊗ σ

(M,1)
B

)

= pR (|0, e0〉 〈0, e0|+ |1, e1〉 〈1, e1|+ |0, e0〉 〈1, e1|+ |1, e1〉 〈0, e0|)⊗ σ(R)
B

+ pM

(
|0, e0〉 〈0, e0| ⊗ σ(M,0)

B + |1, e0〉 〈1, e1| ⊗ σ(M,1)
B

)
,

where M|i〉 is defined as before, σ(R)
B is the state of Bob’s system HB in

the event he reflected, and σ
(M,j)
B is the state of Bob’s system in the event he

measured and resent with outcome |j〉 (these σB ’s are all of unit trace).
Now assume that, instead of sending trE(|e〉 〈e|) to Bob (where |e〉 = UE |a〉),

Eve instead sends the state: |e′〉 = α |0〉 + β |1〉 where α :=
√
〈e0|e0〉 and

β :=
√
〈e1|e1〉 (these are the same |e0〉 , |e1〉 as before which Eve has complete

information on). Note that, since 〈x|x〉 ∈ R for any state |x〉, and in fact
〈x|x〉 ≥ 0, both α and β are real and non-negative as claimed. Bob applies the
same process as described above resulting in the system being in the state:

ρrestricted = pR |e′〉 〈e′| ⊗ σ(R)
B

+ pM

(
M|0〉 |e′〉 〈e′|M|0〉 ⊗ σ

(M,0)
B +M|1〉 |e′〉 〈e′|M|1〉 ⊗ σ

(M,1)
B

)

= pR
(
α2 |0〉 〈0|+ β2 |1〉 〈1|+ αβ |0〉 〈1|+ βα |1〉 〈0|

)
⊗ σ(R)

B

+ pM

(
α2 |0〉 〈0| ⊗ σ(M,0)

B + β2 |1〉 〈1| ⊗ σ(M,1)
B

)
.
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We will now construct a unitary operator V , acting only on HT ⊗HE , such that
V ρrestrictedV ∗ = ρ. Note that we assume, without loss of generality, that E’s
system is cleared to some zero state |0〉 ∈ HE .

Case 1: Assume that α =
√
〈e0|e0〉 and β =

√
〈e1|e1〉 are both non-zero.

Define V to be the unitary operator such that: V |i, 0〉 = |i, ei〉 /
√
〈ei|ei〉. Since

Eve is fully aware of how her probe UE operates, she has full information on
the state |ei〉 and thus, may construct such a unitary V - note that it is only
relevant how V operates when Eve’s ancilla is in the state |0〉 and thus V may
act arbitrarily for other initial states of HE .

Then we have:

V ρrestrictedV ∗ = pR(
α2

α2
|0, e0〉 〈0, e0|+

β2

β2
|1, e1〉 〈1, e1|

+
αβ

αβ
|0, e0〉 〈1, e1|+

βα

βα
|1, e1〉 〈0, e0|)⊗ σ(R)

B

+ pM (
α2

α2
|0, e0〉 〈0, e0| ⊗ σ(M,0)

B +
β2

β2
|1, e1〉 〈1, e1| ⊗ σ(M,1)

B )

= ρ.

Note that in the above we abused notation slightly: we actually applied the
operator V ⊗ IB where IB is the identity operator acting on B’s space HB .

Case 2: One of α or β is zero. This is similar to case 1, however now either
|0, e0〉 ≡ 0 or |1, e1〉 ≡ 0 (depending on which of α or β is zero). Thus, we may
follow the same process as above however we need not worry about how V acts
on the state |0, 0〉 if α = 0 or |1, 0〉 if β = 0.

Of course α and β cannot both be zero simultaneously and thus we are fin-
ished with the single state case. If Alice chooses between two orthogonal states
|a〉 or |b〉, both of which are publicly known, Eve may first perform a measure-
ment to determine which of the two were sent. Based on this measurement,
she may proceed as above in the single state case (her operator UE may act
differently on either |a〉 or |b〉 however since she knows, deterministically which
state was sent, she may construct the operator V appropriately).

Therefore, any attack that can be performed before forwarding the qubit to
Bob, can be done afterwards (except, perhaps, for “skewing” the superposition).
By setting U ′F = UF · V , the proof is complete.

In the above, we took the meaning “equivalent” to imply that there was no
difference in the final quantum state of the protocol when either the general
attack (UE , UF ) was used or the restricted attack was used (up to, perhaps, an
irrelevant global phase change). Obviously the actual operations E performs
are not equivalent. It is, however, easier to consider the restricted attack when
considering the security of a protocol; the above lemma shows we may do so
without any loss of generality.

As an example of how the two attacks might be different (in terms of actions
performed by E, not in terms of the final quantum state), consider a single-state
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protocol where A always sends |a〉 = 1√
2
|0〉 + i√

2
|1〉 (now there are complex

probability amplitudes) and where E’s general attack on the first channel is to
ignore the qubit (i.e., UE = I, the identity operator); UF is arbitrary. Con-
sider now the “equivalent” restricted attack. We may write UE |a〉 = I |a〉 as
|0, e0〉 + |1, e1〉 where |e0〉 = 1√

2
|χ〉 and |e1〉 = i√

2
|χ〉 where |χ〉 ∈ HE and

〈χ|χ〉 = 1. The restricted attack would be for E to send the (different) qubit
|e′〉 =

√
〈e0|e0〉 |0〉 +

√
〈e1|e1〉 |1〉 = 1√

2
|0〉 + 1√

2
|1〉. Thus, when faced with

this particular general attack, B receives a qubit with a complex probability
amplitude; for the restricted attack he receives |+〉 (the reader may check that
B would also receive |+〉 if A sent |−〉). However, since B can only measure in
the Z basis, this change does not affect anything on his end of the protocol.

When B is finished, he returns a qubit; in this case either |+〉 or |j〉 for
j ∈ {0, 1} depending on whether he reflected or measured and resent respec-
tively. The restricted attack now calls for E to apply V so that |0, 0〉 is sent
to |0, e0〉 /

√
〈e0|e0〉 = |0, χ〉 and, similarly, |1, 0〉 maps to i |1, χ〉. Thus we see

that, if B reflected, V will restore |+〉 to the original |a〉 (which is the state B
would have sent had the general attack been used and he reflected); if B mea-
sured and sent |0〉 nothing is changed (besides, perhaps, adjusting E’s ancilla
to |χ〉 as called for by the general UE); if B measured and sent |1〉 the phase
is changed to i |1〉, however global phase changes do not matter. Thus, while
the operations performed by E are very different, at the end of the protocol,
there is absolutely no difference between the two in terms of the final resulting
quantum state, and so no advantage may be gained by E.

We observe that, in the case of single-state protocols, there is an alternative
way to write Lemma 2.1. It is:

• Assuming the same conditions as in the lemma (except now A sends only
a single state |a〉 each iteration), for every general attack (UE , UF ) there
is an equivalent restricted attack (b, U ′F ) where b ∈ [−1/2, 1/2] and U ′F is
an operator acting on HT ⊗HE . For this attack E sends the state:√

1
2

+ b |0〉+

√
1
2
− b |1〉 ,

and applies U ′E on the returning qubit. Note that b depends on UE while
U ′F depends on both UE and UF .

This is clearly equivalent to the original lemma: note that E sends the state
|e〉 = α |0〉+ β |1〉 for real, non-negative α, β. Since α2 ∈ [0, 1], we may write it
as α2 = 1/2 + b for some b ∈ [−1/2, 1/2] which forces β2 = 1 − α2 = 1/2 − b.
Since both α and β are non-negative, the claim follows.

To simplify things, when we later analyze the security of a protocol, we
simply consider Eve’s attack as first biasing the superposition, then applying
an arbitrary U ′F operator. That is to say, there is no need to consider V ’s
construction as it is “absorbed” into the arbitrary U ′F .
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It is interesting to consider exactly how “tight” our above result is. First,
let us consider what happens if Alice chooses to send from a collection of non-
orthogonal states (e.g., the three or four state protocols of [4, 5, 17]); in this case
there exist arbitrary general attacks for which no equivalent restricted attack
exists (there are, of course, general attacks for which restricted attacks exist -
take, for instance, the trivial attack where UE = UF = I, the identity operator).
Again, by “equivalent” we mean that the final resulting quantum states are
identical (up to a global phase change). This should come as no surprise: in [23]
an attack was described against the original SQKD protocol of [4] (a protocol
which dictated that A should prepare one of the four Z or X states randomly
each iteration - i.e., it is not a single state protocol), involving both directions
of the qubit, which leaked more information to E than a single channel attack
could with the same level of disturbance.

However, in this case, we must be careful how we define the restricted attack;
it may no longer make sense that E will prepare her own state disregarding the
one sent from A. Instead, we will simply say it is an attack whereby E sends
a qubit, unentangled with her own ancilla HE , to B. This may be achieved in
a variety of manners: perhaps by E preparing her own fresh qubit; or perhaps
E applies a unitary U ′E to the qubit sent from A to B, acting only on HT . We
will assume the state sent by her is pure and not mixed.

Of course, the process she uses must be the same each iteration (it is a
collective attack). So if she prepares a fresh qubit each time, it must be the same
qubit each iteration - this is in contrast to the two-orthogonal case in Lemma
2.1 where we allow E to make a measurement and adjust her preparation and V
operator based on this result; however allowing this doesn’t make as much sense
in the multi-state case where a measurement would be potentially destructive.
Alternatively, if she uses U ′E , it must be the same U ′E each iteration. Both of
these scenarios have their problems and there might be a “stronger” version of
the restricted attack which allows us to claim something similar to Lemma 2.1;
analyzing this further could be interesting future work.

Once again, assume Bob is restricted to operations BR and BM and that, on
iteration t of the protocol (that is, the t’th qubit sent from Alice), Alice sends the
state |at〉, chosen from a set of states S which we assume contains at least two
non-orthogonal states (e.g., S = {|0〉 , |1〉 , |+〉}). Let |at〉 = αt |0〉+βt |1〉, where
αt and βt are unknown to Eve. Consider the result of Eve’s general collective
attack (UE , UF ) where UE acts on Alice’s qubit and Eve’s ancilla (prepared in
the state |χ〉) as follows:

UE |0, χ〉 = |0, e0〉+ |1, e1〉
UE |1, χ〉 = |0, e2〉+ |1, e3〉

Such that:

〈e0|e0〉+ 〈e1|e1〉 = 〈e2|e2〉+ 〈e3|e3〉 = 1
〈e2|e0〉+ 〈e3|e1〉 = 〈e0|e2〉+ 〈e1|e3〉 = 0

Since our claim is that not every general attack is equivalent to a restricted
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attack, we may consider an attack of our own choosing. Therefore, let us assume
that 〈ej |ej〉 > 0 for all j, and 〈ej |ek〉 = 0 for all j 6= k.

By linearity, we have UE |at〉 = αt(|0, e0〉 + |1, e1〉) + βt(|0, e2〉 + |1, e3〉) =
|0, ẽt0〉+ |1, ẽt1〉 where |ẽt0〉 = αt |e0〉+ βt |e2〉 and |ẽt1〉 = αt |e1〉+ βt |e3〉.

After Bob’s operation, the state, when E receives a qubit, is:

ρ = pRUE |at, χ〉 〈at, χ|U∗E ⊗ σ
(R)
B

+ pM

(
|0, ẽt0〉 〈0, ẽt0| ⊗ σ

(M,0)
B + |1, ẽt1〉 〈1, ẽt1| ⊗ σ

(M,1)
B

)
.

If, however, Eve attempts to use a restricted collective attack, she will send
the state |Et〉 := xt |0〉 + yt |1〉 for some xt, yt ∈ C with |xt|2 + |yt|2 = 1. This
state may be something she prepared fresh, or it may be the result of the product
U ′E |at〉 where U ′E is an operator acting only on HT (thus it may also be the
same state A sent if U ′E = I - e.g., xt = αt, yt = βt - in the case E simply
“ignores” the first quantum channel). She then receives, after Bob’s operation,
the state:

ρrestricted = pR |Et〉 〈Et| ⊗ σ(R)
B

+ pM

(
|xt|2 |0〉 〈0| ⊗ σ(M,0)

B + |yt|2 |1〉 〈1| ⊗ σ(M,1)
B

)
.

Note that, from this, it is clear that the state sent by E must satisfy |xt|2 =
〈ẽt0|ẽt0〉 and |yt|2 = 〈ẽt1|ẽt1〉. If this is not the case, the restricted attack is not
necessarily equivalent to the general collective attack (B’s measurement will
produce outcomes with different probabilities - whether or not this is something
advantageous to E is irrelevant as we are only considering when the attacks
produce equivalent final quantum states). By our assumptions on the states
|ej〉, this implies both |xt|2 and |yt|2 must be non-zero.

Eve now wishes to apply a unitary V , acting on HT ⊗ HE , such that
V ρrestrictedV ∗ = ρ. However, just looking at the case when B measures and
receives outcome 0, which happens with non-zero probability by our assump-
tions on |ej〉, in order to do so, she requires V |0, χ〉 = eiθ

t
0 |0, ẽt0〉 /|xt| (assuming

here that E’s ancilla is cleared to the state |χ〉 ∈ HE). The state |ẽt0〉 (and
also |ẽt1〉) are functions not only of |ej〉 (which depend only on E’s first attack
operator UE), but also αi and βi - two values which, unlike the single state and
two-orthogonal state protocols considered in Lemma 2.1, cannot, with probabil-
ity one, be determined by E. As a consequence of this, E cannot, with absolute
certainty, construct the necessary operation V .

For instance, on iteration t = 0, from the arguments above, it is forced
that V |0, χ〉 = eiθ

0
0 |0, ẽ0

0〉 /|x0|. On iteration t = 1, again, it is required that
V |0, χ〉 = eiθ

1
0 |0, ẽ1

0〉 /|x1| (by our assumptions on |ei〉, neither |x0| nor |x1| are
zero). Now we have:
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V |0, χ〉 = V |0, χ〉

⇐⇒ eiθ
0
0

|x0|
(α0 |e0〉+ β0 |e2〉) =

eiθ
1
0

|x1|
(α1 |e0〉+ β1 |e2〉)

⇐⇒
(
α0 −

|x0|
|x1|

ei(θ
1
0−θ

1
0)α1

)
|e0〉 =

(
|x0|
|x1|

β1e
i(θ10−θ

0
0) − β0

)
|e2〉

Since 〈e0|e2〉 = 〈e2|e0〉 = 0, and 〈ej |ej〉 > 0, by our assumptions, this forces
α0 = xeiθα1 and β0 = xeiθβ1, where θ = θ1

0 − θ0
0 and x = |x0|/|x1|. This of

course implies that |a0〉 must be equal to xeiθ |a1〉. First, this forces x = 1
and, so, |x0| = |x1|; secondly, in the event of this equality, the state sent on the
second iteration is forced to be the same state sent on the first up to a global
phase change. This argument may be repeated for subsequent iterations.

Just to illustrate, let α0 = 1 (in case A sent |0〉). Then V must send |0, χ〉
to c |0, e0〉 (for some non-zero scalar c ∈ C). If α1 = 0 (so β1 = 1), then V must
send |0, χ〉 to c′ |0, e2〉 (again c′ 6= 0). Since we assumed 〈e0|e0〉 , 〈e2|e2〉 > 0 and
〈e0|e2〉 = 0 this cannot be done.

Thus, in this scenario of multi-state protocols, the restricted collective attack
is not necessarily equivalent to the general collective attack (there may be some
attacks which are equivalent of course - perhaps a large enough family of “useful”
attacks are contained here - this may be interesting future work). Whether this
difference is of any use to the adversary depends on the protocol and the general
attack (UE , UF ).

Returning to single-state and two-orthogonal state protocols, the SQKD
protocols of [10] allow Bob to measure in the Z basis and then prepare a new
qubit which may or may not depend on the measurement result. For instance,
if Bob measures |0〉, he may send |1〉. In this case the restricted attack is also
not necessarily equivalent to the general one.

Indeed, assume Alice is restricted to sending either a single state |a〉 or
choosing, probabilistically, to prepare and send one of two orthogonal states
|a〉 or |b〉. Furthermore, assume there is a non-zero probability that Bob may
send |1− r〉 after measuring |r〉 (for r ∈ {0, 1}). In the general collective at-
tack, Eve sends to Bob the state trE(|e〉 〈e|) where |e〉 := |0, e0〉 + |1, e1〉. For
the restricted attack she sends only α |0〉 + β |1〉; as before let us assume that
〈ej |ej〉 > 0. Observe that, after Bob has performed his encoding operation, in
order to construct an operator V mapping the restricted state to the general
state, it must be that V maps the state |0〉 → eiθ0 |0, e0〉 /

√
〈e0|e0〉 (in case Bob

reflected or measured and resent) and |0〉 → eiθ1 |0, e1〉 /
√
〈e1|e1〉 (in case Bob

measured 1 and prepared 0). But this forces:

|e0〉 =

(√
〈e0|e0〉√
〈e1|e1〉

)
ei(θ1−θ0) |e1〉 ,

which is not necessarily true for every UE (for instance, if 〈e0|e1〉 = 0).
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Depending on the actual attack E employed, there may be an equivalent
restricted version; however this is not guaranteed for any (UE , UF ). Whether or
not E can use this to gain an advantage is subject to the actual protocol and
specific general attack.

The following lemma is helpful when proving robustness of a single state
(or two-orthogonal state) SQKD protocol. Essentially it states that, if Eve
wishes to avoid detection, she must send the same state that Alice sent. That
is, she cannot attempt to bias the state slightly and then “fix” it on the return
path. Thus, when proving robustness, one may simply ignore the initial channel
completely and concentrate on Eve’s return attack.

Lemma 2.2. Let {|a〉 , |b〉} be an orthonormal basis of HT . Assume that, on
any iteration, Alice sends either |a〉 or |b〉, and that there is a non-zero chance
that Bob will reflect, and Alice will measure in the {|a〉 , |b〉} basis to verify the
security of the channel or that Bob will measure and resend and that Alice will
measure in the Z basis for the same security purpose. Then, assuming Eve is
limited to collective attacks:

1. In order to avoid detection, if Alice prepares and sends the state |a〉, Eve
must send the state |e〉 = α |0〉 + β |1〉 such that |α|2 = | 〈0|a〉 |2, |β|2 =
| 〈1|a〉 |2, (similarly for the case that A sent |b〉).

2. If E wishes to avoid detection, and if A prepares and sends the state |a〉,
there is no advantage to E by sending any other state (i.e., she should
send |e〉 = |a〉) - similarly for |b〉.

Proof. Eve may perform a measurement in the {|a〉 , |b〉} basis to determine
which state was sent by Alice (unnecessary in the single-state case). Assume,
on iteration i, A sends |a〉 = γ |0〉+ δ |1〉 for γ, δ ∈ C. Since Lemma 2.1 applies,
Eve will then send to Bob the state |e〉 = α |0〉+β |1〉 for α, β ∈ C (we provide her
extra power here allowing her to chose probability amplitudes that are complex
even though our previous lemma showed they might as well be real - we do this
in case γ or δ are complex allowing part (2) of this lemma to follow naturally).

Bob will either measure and resend or reflect. Either way he will return a
qubit to Eve who will then apply her unitary probe UF acting onHT⊗HE . Since
we are assuming a collective attack, we may assume, without loss of generality,
that Eve’s ancilla space is cleared to |0〉E . The most general attack UF acts as
follows:

UF |0, 0〉 = |U0〉 := |0, e0〉+ |1, e1〉
UF |1, 0〉 = |U1〉 := |0, e2〉+ |1, e3〉

Where |ei〉 are states in Eve’s ancilla satisfying:

〈e0|e0〉+ 〈e1|e1〉 = 〈e2|e2〉+ 〈e3|e3〉 = 1
〈e2|e0〉+ 〈e3|e1〉 = 〈e0|e2〉+ 〈e1|e3〉 = 0

Thus, after Bob has reflected and Eve has applied UF , the state of the system
is:
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ρreflect = UF |e〉 〈e|U∗F = |α|2 |U0〉 〈U0|+ |β|2 |U1〉 〈U1|
+ αβ∗ |U0〉 〈U1|+ α∗β |U1〉 〈U0| ,

(1)

where α∗, β∗ represents complex conjugation (or conjugate transpose in the
case of U∗F ).

If Bob had measured and resent, the system would be in the state:

ρmeasure = |α|2 |U0〉 〈U0|+ |β|2 |U1〉 〈U1| .

Observe that, if B had measured and resent, in order to avoid detection,
it must be the case that |e1〉 = |e2〉 ≡ 0 (else, there is a possibility that Alice,
measuring in the Z basis, would get a different result from Bob’s measurement).
This simplifies the states such that |U0〉 := |0, e0〉, |U1〉 := |1, e3〉 and 〈e0|e0〉 =
〈e3|e3〉 = 1.

We next consider the case that Bob reflects and Alice measures in the
{|a〉 , |b〉} basis. Denote by pa the probability that, if Alice decides to mea-
sure in this basis, she receives outcome |a〉 = γ |0〉 + δ |1〉. To avoid detection,
Eve must try to construct UF so that pa = 1. From Equation 1, we can compute
this probability as follows:

pa = |αγ|2 〈e0|e0〉+ |βδ|2 〈e3|e3〉+ αβ∗γδ∗ 〈e0|e3〉+ α∗βγ∗δ 〈e3|e0〉 ,

Let γ =
√
peiθa , δ =

√
1− peiθb , and 〈e0|e3〉 = reiθe (r ∈ [0, 1]). Also let

α =
√
qeiθn and β =

√
1− qeiθm . We must show pa = 1⇒ p = q:

pa = |αγ|2 〈e0|e0〉+ |βδ|2 〈e3|e3〉+ αβ∗γδ∗ 〈e0|e3〉+ α∗βγ∗δ 〈e3|e0〉 ,
= qp+ (1− q)(1− p)
+ r

√
q(1− q)p(1− p)

(
ei(θn−θm+θa−θb+θe) + ei(θm−θn+θb−θa−θe)

)
≤ qp+ (1− q)(1− p) + 2

√
q(1− q)p(1− p)

(2)

With equality only if r = 1 and θe = θm − θn + θb − θa + 2πk (k ∈ Z). Note
that both these values (r and θe) are in Eve’s control and that θa and θb are
public knowledge. Since Equation 2 is bounded by one, and since it is Eve’s goal
for pa = 1, she must require, these values to be set as described (else pa < 1).
Thus we have equality above and so:

pa = qp+ (1− q)(1− p) + 2
√
q(1− q)p(1− p) = 1

⇒ p2 − 2pq + q2 = 0
⇒ p = q

Thus, q = |α|2 = p = |γ|2 = | 〈0|a〉 |2 and |β|2 = |δ|2 = | 〈1|a〉 |2 as desired.
The second statement is clear since Eve may always apply a unitary operator,

rotating the phase of |0〉 and |1〉 arbitrarily, after Bob has performed his encoding
operation.
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The above results in this section only apply to collective attacks. However,
when proving a protocol is robust, this is sufficient assuming the probability of
Alice and Bob running a security check on the first iteration occurs with non-
zero probability and that A sends a qubit only after receiving one from B on the
last iteration (which is an assumption used, for example, in [17]). Furthermore,
when moving away from robustness and considering, for instance, the key-rate
in the asymptotic scenario [3] of these SQKD protocols (which is important
future work), it can be shown using the results described in [24, 25] that, if
A and B permute their info bits (after the quantum communication stage
A chooses randomly a permutation and announces it on the public channel),
security against collective attacks implies security against any arbitrary, general,
coherent attack. It is this line of work, which is perhaps the next step for SQKD
protocols, that we suspect our security lemma would be most useful.

3 A New Single State SQKD Protocol

In this section, we present a new single state SQKD protocol and use the above
results to prove its robustness. This protocol is, to our knowledge, the first
such protocol which permits reflections, and thus X basis states, to contribute
to the info string, even though Bob is unable to manipulate (i.e., measure
and/or prepare) such states. This protocol operates not by using the actual
measurement results to contribute to the key, but instead Bob’s action. That
is, if he choses to reflect Alice’s qubit, this will constitute a zero info bit;
otherwise, if he choses to measure and resend, that iteration will count as a
one bit. While the protocols of [4, 5] may be considered the semi quantum
version of the BB84 protocol, our protocol described here might be, in some
ways, considered to be the semi-quantum version of the SARG04 protocol [2]
which we took some inspiration from.

A single iteration of the protocol runs as follows:

1. Alice sends the state |+〉 to Bob.

2. Bob chooses a random bit kB ∈ {0, 1}; this will be his candidate infoB
bit for this iteration (we say “candidate” as it might come to pass that
this iteration is discarded in which case kB is “thrown out”).

3. Next, B executes the following process depending on his random choice
kB :

• If kB = 0, then Bob reflects the qubit. He also sets an internal,
private flag denoted acceptB to the value TRUE with probability 1/2;
otherwise he sets this flag acceptB = FALSE.

• If kB = 1, then Bob measures and resends. Furthermore, he sets his
internal, private flag acceptB to TRUE only if his measurement result
was a |0〉; otherwise he sets this flag to FALSE.
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Note that if kB = 0, his private flag’s value is completely random; other-
wise its value depends on his measurement result. He keeps the value of
acceptB private for now.

4. Alice chooses randomly to measure the incoming qubit in the Z or X
basis. Alice sets two internal registers acceptA and kA (her candidate
infoA bit for this iteration) as follows:

• If she measures in the Z basis resulting in the outcome |1〉, she sets
acceptA = TRUE and kA = 0

• If she measures in the X basis and this results in outcome |−〉, she
sets acceptA = TRUE and kA = 1.

• All other cases, she sets acceptA = FALSE and sets kA to any arbi-
trary value.

5. With a certain probability (determined by the user), A sets acceptA to
FALSE. We will see that this forces this iteration to be used as a security
check.

6. Alice and Bob broadcast their values of acceptA and acceptB respec-
tively. If both are set to TRUE, then Alice and Bob use their values of kA
and kB for their info strings.

7. Security Check: If one or both values are FALSE, Bob informs Alice of his
value for kB and also, in the case that kB = 1, his measurement outcome.
This allows Alice to verify the security of the channel as follows:

• If Bob reflected (kB = 0), and Alice measured in the X basis, she
should have received |+〉.

• If Bob measured and resent (kB = 1) and Alice measured in the Z
basis, she should have received the same value Bob measured.

• If the number of errors exceeds some user-configurable threshold,
both Alice and Bob abort.

This process repeats N times. As usual, following this, Alice and Bob run
error correcting and privacy amplification protocols.

In a noiseless channel, one would expect N/8 of these iterations to contribute
to the info string. Of the remaining 7N/8 iterations, one would expect that
one quarter of them are used to estimate the noise in the X basis and another
quarter to be used to estimate the noise in the Z basis.

Theorem 3.1. The protocol described above is correct. That is, if there is no
noise, both Alice and Bob will agree on the same info string.

Proof. Consider a single iteration of the protocol. After Alice sends to Bob
|+〉, Bob will either measure and resend (representing an info bit of 1 and
accepting only if the measurement result was a zero) or he will simply reflect
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(representing an info bit of 0 and accepting only with probability 1/2). Bob
will store his decision in a private register HB spanned by the basis states
|a, 0〉 , |a, 1〉 , |r〉 representing respectively, whether he accepts this iteration with
info = 0, accepts with info = 1, or rejects this iteration. This register’s use
will be equivalent to Bob storing his decisions in a classical memory. Thus, after
Bob’s operation, the system is in the state (we are assuming no noise):

ρ = 1
4 |+〉 〈+| ⊗ |a, 0〉 〈a, 0|B + 1

4 |+〉 〈+| ⊗ |r〉 〈r|B
+ 1

2

(
1
2 |0〉 〈0| ⊗ |a, 1〉 〈a, 1|B + 1

2 |1〉 〈1| ⊗ |r〉 〈r|B
) (3)

When Alice receives a qubit back from Bob, she will either measure in the
X or Z basis (choosing either with probability 1/2). If she chooses to measure
in the X basis, she will accept with info = 1 only if she measures |−〉. If
she chooses to measure in the Z basis she will accept with info = 0 only if
she measures |1〉. All other cases are rejected. Assume that Alice has her own
private quantum register HA spanned by the same basis states as HB . Thus,
after Alice’s operation, the state of the system is:

σ =
1
2
MX(ρ) +

1
2
MZ(ρ), (4)

where:

MX(ρ) = 1
4 |+〉 〈+| ⊗ |r〉 〈r|A ⊗ |a, 0〉 〈a, 0|B + 1

4 |+〉 〈+| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B
+ 1

8 |+〉 〈+| ⊗ |r〉 〈r|A ⊗ |a, 1〉 〈a, 1|B
+ 1

8 |−〉 〈−| ⊗ |a, 1〉 〈a, 1|A ⊗ |a, 1〉 〈a, 1|B
+ 1

8 |+〉 〈+| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B
+ 1

8 |−〉 〈−| ⊗ |a, 1〉 〈a, 1|A ⊗ |r〉 〈r|B
(5)

and:

MZ(ρ) = 1
8 (|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |a, 0〉 〈a, 0|B

+ |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |a, 0〉 〈a, 0|B)
+ 1

8 (|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |r〉 〈r|B + |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |r〉 〈r|B)
+ 1

4 (|0〉 〈0| ⊗ |r〉 〈r|A ⊗ |a, 1〉 〈a, 1|B + |1〉 〈1| ⊗ |a, 0〉 〈a, 0|A ⊗ |r〉 〈r|B)
(6)

From this, it is clear that if A and B both accept, their respective info bits
will match.

Theorem 3.2. The protocol described above is completely robust.

Proof. In the following, we will assume, as was done with the security proofs in
[17], that A sends a qubit only after receiving one from B. Also, as with [4, 5]
(and all other robustness proofs for SQKD protocols), we will prove robustness
before error correction (as that process by necessity leaks information to E - see
[4] for more information on the definition of robustness).
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Consider the first iteration of the protocol. It is possible that the very first
iteration may be used to verify the security of the channel. Since this is the first
iteration, Eve’s ancilla space is in some known state |χ〉 〈χ|E . Applying Lemma
2.1, we know Eve may simply send a state |e〉 = α |0〉 + β |1〉 for real α and
β. By Lemma 2.2, to avoid detection, Eve might as well send the state |e〉 =
|+〉 = 1√

2
(|0〉+ |1〉). Bob will then either reflect (with probability pR = 1/2) or

measure and resend (with probability pM = 1/2). Furthermore, Bob will store
his choice and, if applicable, his measurement result, in his own private register
(he may also store other information such as the value of acceptB , however
this information is not required for our current discussion). Thus, when Eve
receives the qubit back from Bob, the system is in the state:

ρ = pR |+〉 〈+|T ⊗ |χ〉 〈χ|E ⊗ |reflect〉 〈reflect|B
+ pM

2 |0〉 〈0|T ⊗ |χ〉 〈χ|E ⊗ |measure, 0〉 〈measure, 0|B
+ pM

2 |1〉 〈1|T ⊗ |χ〉 〈χ|E ⊗ |measure, 1〉 〈measure, 1|B
(7)

Eve will now apply a unitary operator UF acting on the transit space and
her ancilla space. UF acts as follows:

UF |0, χ〉 = |U0〉 := |0, e0〉+ |1, e1〉
UF |1, χ〉 = |U1〉 := |0, e2〉+ |1, e3〉

Where |ei〉 are states in Eve’s ancilla satisfying:

〈e0|e0〉+ 〈e1|e1〉 = 〈e2|e2〉+ 〈e3|e3〉 = 1
〈e2|e0〉+ 〈e3|e1〉 = 〈e0|e2〉+ 〈e1|e3〉 = 0

The state after Eve applies UF is σ := UF ρU
∗
F defined as:

σ = pR

2 (|U0〉 〈U0|+ |U1〉 〈U1|+ |U0〉 〈U1|+ |U1〉 〈U0|)⊗ |reflect〉 〈reflect|B
+ pM

2 |U0〉 〈U0| ⊗ |measure, 0〉 〈measure, 0|B
+ pM

2 |U1〉 〈U1| ⊗ |measure, 1〉 〈measure, 1|B
(8)

The transit qubit is then sent back to Alice who performs a measurement.
Assume that Bob chose to measure and resend and that Alice also choose to
measure in the Z basis. Furthermore, assume that Alice and Bob agree to use
this iteration as a security check. These events occur with non-zero probability.
Then, it is clear, in order for Eve to avoid detection, it must be the case that
|e1〉 = |e2〉 = 0 (thus 〈e0|e0〉 = 〈e3|e3〉 = 1).

Consider now the event that Bob chose to reflect, Alice to measure in the X
basis, and both chose to use this iteration to check the security of the channel
(again, this is an event that occurs with non-zero probability). Define σreflect =
1
2 (|U0〉 〈U0| + |U1〉 〈U1| + |U0〉 〈U1| + |U1〉 〈U0|) (the state of the system if Bob
chose to reflect; i.e., the resulting state if Bob measures reflect). It is clear
that the probability of Alice measuring |+〉 then is:
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p+ := tr(|+〉 〈+|σreflect |+〉 〈+|)
= 1

2 tr
(

1
2 (|+〉 (|e0〉 〈e0|+ |e3〉 〈e3|+ |e0〉 〈e3|+ |e3〉 〈e0|) 〈+|)

)
= 1

4 (〈e0|e0〉+ 〈e3|e3〉+ 〈e0|e3〉+ 〈e3|e0〉)
(9)

Eve avoids detection if and only if p+ = 1. Since 〈e0|e0〉 = 〈e3|e3〉 = 1,
p+ = 1 if and only if 〈e0|e3〉 = 〈e3|e0〉 = 1. This however implies that |e0〉 = |e3〉.
Indeed, assume for contradiction that |e3〉 = |e0〉 + |x〉 for some vector |x〉.
Then, 1 = 〈e0|e3〉 = 〈e0|e0〉 + 〈e0|x〉 ⇒ 〈e0|x〉 = 0. Also, 1 = 〈e3|e3〉 =
〈e3|e0〉 + 〈e3|x〉 ⇒ 〈e3|x〉 = 0. Finally, 0 = 〈e3|x〉 = 〈e0|x〉 + 〈x|x〉 ⇒ 〈x|x〉 =
0 ⇐⇒ |x〉 = 0 ⇐⇒ |e0〉 = |e3〉.

Therefore, at the end of the first iteration, to avoid detection, Eve’s ancilla
space must be in the state |e0〉 〈e0| regardless of A or B’s operations. Thus,
to avoid detection, Eve learns nothing on the first iteration. Furthermore, E is
fully aware of the state of her ancilla.

All that remains to be shown is that the public discussion leaks no infor-
mation to Eve. This however is clear. The only discussion sent is whether or
not both Alice and Bob accept the iteration. Note that if one or both of them
decide to reject the iteration, there is no contribution to the info string and,
thus, no information for Eve to learn. Therefore we must only consider the case
when both accept. This can occur only in the case of two events:

1. Bob choose to reflect, Bob choose to accept, Alice choose to measure in
the Z basis, and her measurement outcome was |1〉. Each of these events
occur with probability 1/2. In this case both Alice and Bob agree on an
info bit of 0.

2. Bob choose to measure and resend, Bob’s measurement result was |0〉,
Alice choose to measure in the X basis, and her measurement outcome
was |−〉. Each of these individual events occur with probability 1/2. In
this case both Alice and Bob agree on an info bit of 1.

The probability of Event 1 occurring is 1/16; likewise for Event 2 occurring.
Thus, when Eve learns that both Alice and Bob have accepted, it is equally
likely that the info bit they agreed upon was a 0 or a 1. Furthermore, if
Eve incorporates this knowledge into her ancilla space, she is still fully aware
of its state and thus Lemmas 2.1 and 2.2 may be applied again on subsequent
iterations repeating the above discussion. Thus, inductively, we see this protocol
is robust.

4 Closing Remarks

From a theoretical standpoint, semi quantum key distribution is a very inter-
esting line of research helping us to better understand exactly how “quantum”
two parties need to be in order to derive the same benefits from a fully quantum
protocol (e.g., BB84). It is interesting to observe that, in this semi-quantum
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setting, X basis states may be used not only for security purposes, but to con-
tribute to the info string as our new protocol demonstrates. Beyond this, a
vital next step in SQKD research is to understand the effects of noise (induced
by E’s attack) on the protocol by considering, for instance, the key rate in the
asymptotic scenario [3, 26, 20] and attempting to compute the maximal tol-
erated noise before this rate drops to zero. It can be shown, at least for the
protocols considered in this paper, that, using the same results from [24, 25], we
need only consider collective attacks and security in this setting implies security
against any general attack. Usually, when considering the security of a two-way
quantum channel, the complexity of this computation, even for collective at-
tacks, increases drastically; however, when working with single state protocols,
we may apply Lemma 2.1 greatly decreasing this complexity. It would be very
interesting future work to apply the results in this paper in that direction to
get a better idea of where these SQKD protocols stand in comparison to a fully
quantum protocol.
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