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Abstract—A semi-quantum key distribution (SQKD) protocol
allows two users A and B to establish a shared secret key that
is secure against an all-powerful adversary E even when one
of the users (e.g., B) is semi-quantum or classical in nature
while the other is fully-quantum. A mediated SQKD protocol
allows two semi-quantum users to establish a key with the help
of an adversarial quantum server. We introduce the concept of a
multi-mediated SQKD protocol where two (or more) adversarial
quantum servers are used. We construct a new protocol in this
model and show how it can withstand high levels of quantum
noise, though at a cost to efficiency. We perform an information
theoretic security analysis and, along the way, prove a general
security result applicable to arbitrary MM-SQKD protocols.
Finally, a comparison is made to previous (S)QKD protocols.

I. INTRODUCTION

Semi-quantum key distribution (SQKD), originally intro-
duced in 2007 by Boyer et al., [1] allows for the establishment
of a secret key between two parties A and B such that security
is guaranteed against an all-powerful adversary E (something
impossible to achieve through classical communication alone)
and where one party, typically B, is severely restricted in his
quantum capabilities and is, in a way, “classical” in nature.
Studying SQKD protocols allows us to investigate the question
“how quantum does a protocol need to be to gain an advantage
over its classical counterpart?” Beyond theoretical interests,
there may also be practical benefits to such systems. Indeed,
one may envision a future quantum communication network
utilizing fully-quantum devices; however if some device mal-
functions, one may be able to switch to a “semi-quantum”
mode of operation to continue secure communication. Alterna-
tively, semi-quantum devices may be cheaper to manufacture
eventually as they require less quantum capabilities from some
users. We stress, however, that in this paper we are only
interested in the theoretical advantages to SQKD, namely, to
study the “gap” between quantum and classical protocols.

Normally, SQKD protocols operate with A being a “fully-
quantum user” and B being a “classical user.” A two-way
quantum channel allows A to send qubits, prepared in any
state to the classical user B. This user, then, can either
Measure and Resend - that is, take the qubit, measure
it in the Z basis (spanned by {|0〉 , |1〉}) and resend a Z
basis qubit to A; or he can Reflect - that is, disconnect
from the quantum channel and “bounce” the qubit back to
A undisturbed. Note that the classical user can only directly
operate in the Z basis or he can simply disconnect from the

Fig. 1. Diagram showing parties involved. Two “classical” users A and B are
connected to two fully-quantum servers M1 and M2. These servers may be
adversarial, however honest mediators need not collaborate and can be, e.g.,
competing companies. E is a third-party adversary.

channel. Clearly if both A and B were restricted to these
two operations, the entire protocol would be mathematically
equivalent to classical communication (and hence not perfectly
secure). When a qubit returns to the fully-quantum user A, she
may measure in any basis of her choice.

In [2], the idea of a mediated SQKD (M-SQKD) protocol
was introduced where both A and B are “classical” in this
sense, but, by utilizing the services of a fully-quantum server
to prepare and measure in alternative bases, allowed A and
B to establish a shared secret key. Security was proven in
an information theoretic sense, even when this fully-quantum
server was an all-powerful adversary. Since then, other me-
diated SQKD protocols have been proposed [3], [4] though
without noise tolerance analyses.

In this paper, we revisit the idea of M-SQKD and introduce
the idea of multi-mediated SQKD (MM-SQKD) where, as
before, both A and B will be classical according to semi-
quantum cryptographic definitions in [1], but they will now
utilize the services of two adversarial quantum servers. Our
goal will be to create a protocol that has a high tolerance
to noise. We make the assumption in this work that these
adversarial servers may collaborate after the protocol is com-
plete, but during the protocol’s operation, they act indepen-
dently of one another, except with regards to any classical
messages sent (we formally define our attack model later in
this work). This seems to be a safe assumption as attacking
collaboratively during the quantum communication stage of
our protocol would require them to somehow combine their



quantum memories rapidly. If we assume that the two servers
are spatially dislocated, this would be difficult or impossible
to do without being detected (e.g., by monitoring the time
between qubits sent by the server). Alternatively, the two
servers could be competing companies and so would not be
willing to collaborate to attack anyway. See Figure 1 for a
diagram of the scenario we envision.

We make several contributions in this paper. First we
introduce the idea of multi-mediated SQKD and design a
new protocol for this scenario. Note that, as we wish to use
both mediators to provide an advantage to noise tolerance, the
trivial protocol of running two copies of a standard M-SQKD
protocol will only result in an increase in overall efficiency
but will not result in an increase in noise tolerance! Thus
our protocol must take advantage of these two servers in a
non-trivial manner. After presenting our protocol, we prove
a very general security result, applicable to arbitrary MM-
SQKD protocols using two or more servers thus providing
an important theoretical result applicable to future work in
this area (not just our specific protocol). Using this security
result, we preform an information theoretic security analysis of
our protocol using our attack model described earlier and dis-
cussed in more depth later. Finally, we evaluate our protocol’s
performance on a realistic channel scenario, comparing with
prior work and commenting on future improvements that could
be made. In particular we show our protocol’s noise tolerance
is as high as 18.7% (higher than the 13.04% tolerance from the
M-SQKD protocol in [2], [5] and comparing very favorably
with other (S)QKD protocols).

II. THE PROTOCOL

We present our protocol assuming both mediators are
honest. Later, when we prove security, we will assume the
mediators are adversarial. Our protocol operates as follows:

Quantum Communication Stage: The following process
repeats until a sufficiently large raw-key has been established:
1. Mediator M1 and M2 each prepare, independently, Bell
states of the form: |Φ+〉 = 1√

2
|0, 0〉AB+ 1√

2
|1, 1〉AB , sending

the A particle to Alice and the B particle to Bob. Note that
each mediator prepares their own two-qubit state. Thus, the
joint state, assuming the mediators are honest, should be:
|Φ+〉 ⊗ |Φ+〉. Both A and B receive two qubits each, one
from each Mi.
2. A (resp. B), on receiving a qubit from each mediator, will
choose with probability p to Measure and Resend both
qubits (resending back to the respective mediator from which
it was received) or with probability 1 − p to Reflect both
qubits back to their respective mediators. Both parties choose
independently. If A chooses Measure and Resend, she
saves her measurement results in a bit-string mA ∈ {0, 1}2;
similarly, B will save his measurement results in mB .
3. On receiving their qubits back from Alice and Bob, each
mediator will, independently, perform a Bell measurement.
If the outcome is |Φ−〉 = 1√

2
(|0, 0〉 − |1, 1〉), that mediator

will send the classical message “-′′ while, for any other
measurement result (the three other options), that mediator will

send the message “+′′ Note that this communication need not
be done in an authenticated manner (thus an adversary may
tamper with this message).
4. A and B, on receiving a classical message from both
mediators, will disclose to one-another, using the authenticated
classical channel connecting them, the following information:
(1) The messages they received from both mediators. This
is done to ensure that a mediator (or an adversary) does
not send different classical messages to each user (if this
is detected, users immediately abort); (2) Their choice of
Measure and Resend or Reflect; and (3) their parity
bits if applicable
5. If both parties chose Measure and Resend and if both
party’s parity bit is 0, they will keep their measurement result
to contribute a single raw-key bit. (Note that two qubits are
needed for a single raw-key bit, thus we lose efficiency,
though as we will see in our security analysis, we gain
noise tolerance.) All other iterations, along with a randomly
chosen sample of these raw-key bit iterations, will be used for
parameter estimation later to determine the noise level in the
channel.

Once a sufficient raw-key has been established, standard
error correction and privacy amplification are run resulting
in a secret key (see [6] for a description of these standard
processes). The size of the secret key depends on the observed
noise in the channel. Note that, as we are considering the
asymptotic scenario, we may set p to be arbitrarily close to 1
to improve performance as was done in [2].

III. SECURITY ANALYSIS

We now turn to the security analysis of our protocol. We
will assume the following security model: (1) All noise is the
cause of the adversary (who we assume, in the worst case,
are the servers). (2) Both servers prepare states individually
and later attack their returned qubits individually, resulting in a
private quantum system for each server, however they can send
secret classical information to each other during the protocol.
We also assume they use collective attacks [6], that is each
iteration is attacked identically and individually (possibly in a
probabilistic manner), however they may keep their quantum
memories and measure them at any future point in time
coherently. (3) After the protocol has completed, however, the
two servers may take their (unmeasured) quantum memory
systems, resulting from their attacks, and collaboratively at-
tempt to extract maximal information from both. (4) There
may exist third-party adversaries (as depicted in Figure 1),
however, in this preliminary work, a single adversary cannot
attack theM1 andM2 regions simultaneously. This allows us
to “absorb” any third-party attacks into one of the respective
mediators. The more general case we leave as future work.

Collective attacks are a common assumption in QKD secu-
rity proofs [6]; usually security against general attacks then
follows [7], though we leave a complete proof of that as
future work. In this case, we may use the Devetak-Winter
keyrate equation [8]. Let N be the size of the raw-key
and `(N) the size of the resulting secret key after privacy



amplification. Then, the key-rate `(N)/N as N approaches
infinity is inf(S(A|E) − H(A|B)) where the infimum is
over all collective attacks which induce the observed channel
statistics and where E is the quantum memory of the adversary
(in our case E = M1M2) [8]. S(A|E) is the conditional
von Neumann entropy while H(A|B) is the Shannon entropy.
Computing S(A|E) is the challenge in any (S)QKD security
proof since H(A|B) is a simple function of observed statistics.

A. State Preparation

We first prove a general result, applicable to any MM-SQKD
protocol, concerning the form of the state that M1 and M2

prepare. This result generalizes a result in [2] to the n-server
case (prior work only considered n = 1).

Theorem 1. Consider an MM-SQKD protocol with classical
A and B and with n ≥ 1 (adversarial) quantum servers
performing a (potentially collaborative) collective attack. If
the protocol is such that the servers must prepare a quantum
system, sending one qubit per server to A and B each, and if
A and B either Reflect or Measure and Resend each
qubit back to the originating server, then it is sufficient to
analyze the case where the servers simply prepare the state:

|ψ0〉 =
∑

i∈{0,1}2n
αi |i〉 , (1)

where αi ∈ R≥0 and
∑

i |αi|2 = 1. That is, there is no
advantage to the servers in creating a state which is entangled
with their private quantum memory at the initial stage of the
protocol. Furthermore, if the n servers act independently, then
it suffices to consider a state of the form:

|ψ0〉 =

n⊗
i=1

(αi |0〉+ βi |1〉) , (2)

where αi, βi ∈ R≥0 and |αi|2 + |βi|2 = 1 for all i.

Proof. Consider an arbitrary collective attack that the servers
may perform. The state they prepare, then, may be written,
without loss of generality, as: |φ0〉 =

∑
i∈{0,1}2n αi |i〉⊗ |ci〉 ,

where |ci〉 are arbitrary normalized, but not necessarily or-
thogonal, states in some ancilla HC owned jointly by the n
adversarial servers. By absorbing any alternative phase into
the vectors |ci〉 we may, furthermore, assume each αi is real
and non-negative. Half the qubits are sent to A while the other
half are sent to B.

Let Θ ∈ {0, 1}2n be A and B’s choice of operation;
namely if Θi = 1 then whoever owns the i’th qubit performs
the Measure and Resend operation on it; otherwise the
Reflect operation is preformed. Using standard arguments
(see [1] for the semi-quantum case), it is equivalent to consider
the Measure and Resend operation as applying a CNOT
gate to some local, private, ancilla register (that party may
measure the ancilla later in the Z basis and this is equivalent
to measuring the qubit immediately). Thus, in this case,
following A and B’s operation, the joint state is found to be:
|φ1〉 =

∑
i∈{0,1}2n αi |i〉T ⊗ |i ∧Θ〉AB ⊗ |ci〉C , where i ∧Θ

is bit-wise “and” and where the AB register is held privately

by A and B (separately depending on an irrelevant ordering
of the qubits sent). At this point the T portion returns to the
n servers who will then perform some further operations on
it.

Consider, now, the restricted case shown in Equation 1. If
the servers had sent this instead, the state, following A and
B’s operation would have been: |ψ1〉 =

∑
i∈{0,1}2n αi |i〉 ⊗

|i ∧Θ〉AB . Let V be the operator from HT → HT ⊗ HC

defined on basis states as V |i〉 = |i〉 ⊗ |ci〉. Clearly V is
an isometry (and can thus be extended to a unitary operator)
and is therefore something the servers could apply. Notice
that V |ψ1〉 = |φ1〉. Thus, there is no advantage to sending
the entangled initial state, instead they could prepare the
simpler state shown in Equation 1, then when the qubits return,
apply V before further attacking. The resulting states will be
identical.

Of course, the above assumed the servers were collab-
orating. However if each server acts individually then the
general state is actually of the form |φ0〉 =

⊗n
i=1(αi |0, c0i 〉+

βi |1, c1i 〉). In this case it is not difficult to see, by repeating
the above steps, that the operator V may be written as
V = V1 ⊗ · · · ⊗ Vn where Vi |j〉 = |j, cji 〉.

The same arguments can be used if some servers act alone
while others collaborate thus completing the proof.

We add one further comment in the two-server case that we
consider here. Namely, if A and B enforce that the state they
receive is balanced in the sense that, on measuring any qubit,
the probability of observing |0〉 is equal to the probability of
observing |1〉 (this symmetry assumption is commonly made
in most proofs of (S)QKD security), then the state the two
servers send may be written in the form:

|ψ0〉 = (
√
c0 |Φ+〉+

√
c1 |Ψ+〉)⊗ (

√
d0 |Φ+〉+

√
d1 |Ψ+〉).

(3)
where |Φ±〉 = 1√

2
(|00〉 ± |11〉) and |Ψ±〉 = 1√

2
(|01〉 ± |10〉)

are the four Bell states.

B. Modeling the Second Attack

When qubits return to each server, the server must perform
some operation on it. Normally it should be a Bell measure-
ment followed by a classical message reporting the outcome.
However, an adversarial server should be allowed to perform
any quantum operation on the returning qubits. Nonetheless,
a single classical message should be sent to both parties.
Furthermore, since we do not assume a broadcast channel,
one server must act first - for simplicity we always assume
this isM1, however our analysis is identical if it isM2; note
that there would be no advantage to server’s alternating turns
randomly since they may collaborate at the end.

For single servers, it was shown in [2] that the return attack
is modeled as a quantum instrument which, through standard
techniques, may be dilated to an isometry U1 mapping HT

to Hcl ⊗ Hsecret ⊗ HM1
. Here HT is the four-dimensional

qubit space (modeling the two qubits returning to M1 from
A and B); Hcl is a two dimensional Hilbert space spanned by
orthonormal basis {|“+′′〉 , |“-′′〉} which we use to denote the



classical message sent to A and B (since the server cannot
send different messages, as discussed, this two-dimensional
space is sufficient); Hsecret is a Hilbert space modeling the
secret classical message sent to M2; finally HM1 is M1’s
quantum memory (note that the HT portion may be absorbed
into this space after U1 is applied. The exact attack consists
of M1 applying U1, then measuring the cl space in the
given basis. This determines the message actually sent and the
post measurement state determines the state of the quantum
memory in this event and the secret message to be sent. For
greater details on how one may model a single server’s attack
using a quantum instrument and dilating to an isometry, see
[2] which proved this for the single server case. Since our
servers act individually (the secret message sent will not affect
the proof), that result also applies here. The case for M2 is
similar, though there U2 is an isometry mapping HT ⊗Hsecret

to Hcl2 ⊗HM2
. Note that the “secret” message sent becomes

absorbed intoHM2
. The subspaceHcl2 is spanned by the same

basis as Hcl and is used to model M2’s message.

C. Key-Rate Computation

In light of our security assumption that both mediators are
allowed to collaborate after the protocol’s conclusion, our main
goal in this section is to bound S(A|M1M2), the entropy of
A’s raw-key register conditioned on both mediators’ quantum
memory systems; of course the entropy computation is only
on iterations where a raw-key is distilled (not on iterations
where parameter estimation is performed since these do not
contribute to the final secret key). To do this, we must first
construct a density operator modeling one iteration of the
protocol, conditioning on that iteration being used to distill
a raw-key.

In light of Theorem 1, and enforcing a symmetric attack,
the joint state prepared by the mediators is shown in Equation
3. Note that, in our analysis, we will assume both systems
are received by A and B simultaneously and, later, M1 and
M2 receive their qubits back simultaneously. However this
assumption is only made to ensure clarity in the presentation
of our proof - if the systems are received at alternative times,
since both mediators act independently and since A and B may
postpone their classical “accept/reject” decisions until after
both systems arrive and are processed, our security analysis
holds in the more practical setting where this simultaneous
arrival assumption is not made.

When A and B receive their qubits from both mediators,
they will perform the Measure and Resend operation
(again, we are conditioning on this iteration being used for
raw-key distillation). Furthermore, we must condition on A
(resp. B) receiving the same measurement outcome on their
two qubits. Let’s first consider A’s measurement. If she
measures and observes a |0〉 on both qubits, the joint state
(before B’s measurement) collapses to: c0d0 |0000〉ABAB +
c0d1 |0001〉 + c1d0 |0100〉 + c1d1 |0101〉 . Alternatively, if
she observes a |1〉 on both qubits: c0d0 |1111〉ABAB +
c0d1 |1110〉 + c1d0 |1011〉 + c1d1 |1010〉 . Note that both of
these are the normalized post-measurement states.

Next, B measures. Conditioned on A’s raw key bit being
0, B will observe |0〉 in both his qubits with probability c0d0
and the post-measurement state will simply be |0000〉ABAB .
He will observe |1〉 in both qubits with probability c1d1
(again, conditioned on A’s raw key-bit being 0) and the post-
measurement state is simply |0101〉. Other cases are similar.
Note that, since we are assuming all noise comes from the
adversary’s attack, if the state leaving A and B is, |i, j, i, j〉
then the state arriving at the two mediators will remain
|i, j, i, j〉; noise will be modeled, to the adversary’s advantage,
by the attack operator.

Now, as discussed earlier, the attack operator of server M1

may be modeled as an isometry U1. Without loss of generality,
we may write the action of this operator as follows: U1 |a, b〉 =
|“+′′〉 |m+〉 |e1a,b〉+ |“-′′〉 |m−〉 |f1a,b〉 . where |m±〉 are states
inHsecret which is the secret message sent byM1 toM2. The
action of U2, we write as follows: U2 |mcl,msecret, a, b〉 =
|“+′′〉 |gmcl,msecret,a,b〉+ |“-′′〉 |hmcl,msecret,a,b〉 .

Each server applies their Ui operator, performs a measure-
ment of the “cl” register, and sends the result to A and B
(with M1 acting first). Conditioning on both servers sending
“-′′, and both A and B accepting the final density operator
describing the joint A,B,M1, and M2 system, denoted
ρABM1M2 is (note the “cl” space is no longer needed as, in
this case, it is always “-′′):

c0d0
N

[00]AB ⊗ [f10,0, f
2
0,0] +

c0d0
N

[11]AB ⊗ [f11,1, f
2
1,1] (4)

+
c1d1
N

[01]AB ⊗ [f10,1, f
2
0,1] +

c1d1
N

[10]AB ⊗ [f11,0, f
2
1,0],

where [x,y] = |x〉 〈x| ⊗ |y〉 〈y|; |f2a,b〉 = |h“-′′,m−,a,b〉; and
N is the normalization term:

N = c0d0(〈f10,0|f10,0〉 〈f20,0|f20,0〉+ 〈f11,1|f11,1〉 〈f21,1|f21,1〉)
+ c1d1(〈f10,1|f10,1〉 〈f20,1|f20,1〉+ 〈f11,0|f11,0〉 〈f21,0|f21,0〉)

At this point, we may use a Theorem from [9] to compute
S(A|M1M2). This theorem is for general classical-quantum
states. To simplify notation, let Fa,b = 〈f1a,b|f1a,b〉 〈f2a,b|f2a,b〉.
Then we have the following lower-bound on S(A|M1M2):

c0d0(F0,0 + F1,1)

N

(
H

[
F0,0

F0,0 + F1,1

]
−H[λ1]

)
(5)

+
c1d1(F0,1 + F1,0)

N

(
H

[
F0,1

F0,1 + F1,0

]
−H[λ2]

)
,

where:

λ1 =
1

2
+

√
(F0,0 − F1,1)2 + 4| 〈f10,0|f11,1〉 |2| 〈f20,0|f21,1〉 |2

2(F0,0 + F1,1)

λ2 =
1

2
+

√
(F0,1 − F1,0)2 + 4| 〈f10,1|f11,0〉 |2| 〈f20,1|f21,0〉 |2

2(F0,1 + F1,0)

Note that we are using a stronger version of the Theorem in [9]
derived in their proof. Also note that we only need to bound the
real part of the above inner-products since: | 〈x, y|z, w〉 |2 =
| 〈x|z〉 |2| 〈y|w〉 |2 ≥ Re2| 〈x|z〉 | · Re2| 〈y|w〉 | and the closer
to 1/2, λi is, the smaller S(A|E) (giving a worst-case bound).



D. Parameter Estimation

To evaluate our key-rate expression, we must determine
which of the many parameters appearing in the above equa-
tions, can be observed, or at least bounded based on observa-
tions. Clearly ci and di are observable parameters. Indeed, c0
is the probability that A and B’s measurement results agree
on the state sent by M1. Similarly for d0 for the state sent
by M2. Finally, it is not difficult to show that 〈f1a,b|f1a,b〉 is
the probability thatM1 announces “-′′ given that both A and
B observed |a〉 and |b〉 respectively on the system received
by M1. Similarly for 〈f2a,b|f2a,b〉 (however, here, A and B
must condition onM1 sending the message “-′′ to determine
this statistic) thus allowing A and B to observe Fa,b needed
above. The only remaining quantities are Re 〈f i0,0|f i1,1〉 and
Re 〈f i0,1|f i1,0〉 which we will bound by considering the case
when A and B both reflect.

Let us consider M1, the case for M2 will be similar. If
A and B choose Reflect, then the state arriving at M1

is simply
√
c0 |Φ+〉 +

√
c1 |Ψ−〉 (any noise in the channel

is modeled, to the adversary’s advantage, using M1’s attack
operator). In this case, after applying U1, the state evolves
to |“-′′〉 ⊗ |g0〉 + |“+′′〉 ⊗ |h0〉, where |h0〉 is irrelevant and:
|g0〉 =

(√
c0√
2

(
|f10,0〉+ |f11,1〉

)
+
√
c1√
2

(
|f10,1〉+ |f11,0〉

))
. Thus

the probability thatM1 sends the message |“-′′〉, in the event
A and B both Reflect, which we denote perr1 , is simply
〈g0|g0〉. Expanding this and solving for the two inner-products
appearing in λ1 and λ2, we find:

c0Re 〈f10,0|f11,1〉+ c1Re 〈f10,1|f11,0〉 (6)

= perr1 − c0
2

(〈f10,0|f10,0〉+ 〈f11,1|f11,1〉)

− c1
2

(〈f10,1|f10,1〉+ 〈f11,0|f11,0〉)

−
√
c0c1Re(〈f10,0|f10,1〉+ 〈f10,0|f11,0〉)

−
√
c0c1Re(〈f11,1|f10,1〉+ 〈f11,1|f11,0〉).

We show how the technique of mismatched measurements
[10], [11] can be applied here to directly observe those
inner products appearing on the right-hand-side of the above
equation.

Denote by p10,R to be the probability thatM1 sends the mes-
sage “-′′, conditioned on the event that B chooses Reflect
(the “R”) and that A chooses Measure and Resend and
actually observes outcome |0〉 on the state arriving from M1.
Tracing the evolution of the system afterM1’s attack operator,
conditioning on these events, we easily find the state, as it
arrives to M1, to be:

√
c0 |00〉 +

√
c1 |01〉 , and so, after

applying operator U1, the probability p10,R is found to be:
p10,R = c0 〈f10,0|f10,0〉 + c1 〈f10,1|f10,1〉 + 2

√
c0c1Re 〈f10,0|f10,1〉

Generalizing to the other cases, we find for x = 0, 1 and
y = 1− x:

Re 〈f1x,x|f1x,y〉 =
p1x,R − c0 〈f1x,x|f1x,x〉 − c1 〈f1x,y|f1x,y〉

2
√
c0c1

(7)

Re 〈f1x,x|f1y,x〉 =
p1R,x − c0 〈f1x,x|f1x,x〉 − c1 〈f1y,x|f1y,x〉

2
√
c0c1

(8)

(Note that if c0 = 0 or c1 = 0, then these terms never
appear in 〈g0|g0〉 and so we do not need to resort to mis-
matched measurements here.) The various p1i,j values are
defined analogously to p10,R. Thus, Equation 6 has only
two unknowns, only one of which is free. Finally, the
above process may be repeated for M2. Thus, to compute
our lower-bound on S(A|M1M2), we minimize Equation 5
over two free parameters: Re| 〈f i0,1|f i1,0〉 | upper-bounded by√
〈f i0,1|f i0,1〉 〈f i1,0|f i1,0〉 (due to the Cauchy-Schwarz inequal-

ity). We take the minimum over all such parameters as we
must assume the worst case in that each mediator chose an
optimal attack. Computing H(A|B) is trivial as we explain in
the next section.

E. Evaluation

Our above derivation is valid for any attack in the considered
security model. Based on observable parameters, A and B may
evaluate a lower-bound on S(A|M1M2) and then compute
H(A|B), thus giving a value for the key-rate r. To evaluate
our bound, however, and to compare with other protocols, we
must put numbers to these observable parameters. While in
practice this would be done through actual measurements, we
will, for this work, assume a standard depolarization channel
and use this to determine these values. We will also assume
that the adversarial servers act in a way so as to simulate
an honest server in that all statistics should conform to a Bell
measurement as prescribed by the protocol, even if the servers
are doing something else malicious. These are all enforceable
conditions.

First, we need ci and di. However, these are simply the Z-
basis noise in the channel connecting A and B to each server.
We assume a depolarization channel: Eq(ρ) = (1−2q)ρ+ q

2I.
We use 2q to remain consistent with work in [5] so as to
immediately compare; it also makes sense to use 2q for a
reason which will be clear momentarily. Note that I , above,
is the 4 × 4 identity operator as we are working with two
qubits. We will set q = Q1 for the M1 channel and q = Q2

for the M2 channel. Under this channel assumption, we have
c0 = 1−Q1, c1 = Q1, d0 = 1−Q2, and d1 = Q2.

Next, we determine 〈f1a,b|f1a,b〉 which, as described earlier,
is the probability thatM1 sends the message “-′′ conditioned
on A and B observing |a〉 and |b〉 respectively, from the system
received from the first server. If we assume a depolarization
channel, then the state actually arriving toM1, conditioned on
this event, is: EQ1([a,b]) = (1−2Q1)[a,b]+ Q1

2 I. An honest
server would then perform a Bell measurement and send “-′′

only on receiving outcome |Φ−〉. Thus 〈f1a,a|f1a,a〉 = (1 −
Q1)/2 and 〈f1a,1−a|f1a,1−a〉 = Q1/2. Of course an adversarial
server could replace the noisy quantum channel with a perfect
one, and perform any operation as described earlier, however
in a reasonable setting, A and B could expect, and enforce,
that whatever attack is done, the observable statistics conform
to this derivation. ForM2, the process is identical, and in our
noise scenario, the value is the same but parameterized with
Q2.



Next, we need p10,R which is the probability thatM1 sends
“-′′ conditioned on B choosing Reflect and A observing
|0〉. To determine this in our noise model, we trace the evolu-
tion of the system. On arriving at A and B, the two qubits are
in a state (1−2Q1)[Φ+]+Q1

2 I . Now, conditioning on B choos-
ing Reflect and A choosing Measure and Resend and
actually observing |0〉, the state collapses to (1 − Q1)[00] +
Q1[01]. This system then returns to M1 passing through the
depolarization channel again; thus, the state arriving at the
server is: (1 − 2Q1)((1 − Q1)[00] + Q1[01]) + Q1

2 I. If the
server were honest, it would perform a Bell measurement
on this; the probability of observing |Φ−〉 is then: p10,R =
(1− 2Q1)(1−Q1)/2 +Q1/2 = 1/2−Q1(1−Q1). Note that
we do not need to assume the servers actually are honestly
performing Bell measurements! Instead, users can observe the
channel noise statistics and even enforce that this behavior is
observed. We find similar values for p11,R, p

1
R,0 and p1R,1; and,

in this noise scenario, we also have the same is true for the
statistics from M2.

Substituting this into Equations 7 and 8, we find those
eight (four for M1 and four for M2) are all zero in this
case. This simplifies Equation 6 to: (1−Qi)Re 〈f i0,0|f i1,1〉+

QiRe 〈f i0,1|f i1,0〉 = perri − (1−Qi)
2

2 − Q2
i

2 . One may bound
| 〈f i0,1|f i1,0〉 | ≤ Q1/2 using the Cauchy-Schwarz inequality.
Thus, to evaluate S(A|M1M2), we minimize Equation 5 over
two free parameters: Re 〈f i0,1|f i1,0〉 subject to the constraint
that they are within the range [−Qi/2, Qi/2]. The values of
Re 〈f i0,0|f i1,1〉 are then determined by the above equation.

The only thing remaining to compute the actual key-rate
is H(A|B). Let pkey

i,j be the probability that A’s raw-key bit
is i and B’s raw-key bit is j. From Equation 4, we have:
pkey
0,0 = pkey

1,1 = (1−Q1)
2(1−Q2)

2

4N , and pkey
0,1 = pkey

1,0 =
Q2

1Q
2
2

4N ,

where: N =
(1−Q1)

2(1−Q2)
2+Q2

1Q
2
2

2 . And so: H(A|B) =

H(pkey
0,0, · · · , p

key
1,1)−H(pkey

0,0 + pkey
1,0).

Evaluating our key-rate under this noise scenario reveals a
maximal noise tolerance of 18.7%. This is higher than the
13.04% allowed by the original M-SQKD protocol [5] (under
the same channel assumptions). It is also higher than the noise
tolerance of the original SQKD protocol which can tolerate up
to 11% noise [9]. Finally it is higher than many fully-quantum
protocols (though certain higher-dimensional QKD protocols
can tolerate up to 50% noise [12]).

What is lost, however, is efficiency. Consider effective key-
rate which multiplies the computed key-rate by the probability
of any particular iteration actually yielding a raw-key bit. We
compute our effective key-rate and compare with the effective
key-rate of the M-SQKD protocol from [5] in Figure 2. We
note that, for low noise levels, the M-SQKD protocol is more
efficient, however it cannot tolerate high levels of noise. One
may consider more complex strategies in practice - switching
from M-SQKD to MM-SQKD only if the observed noise is
too high. Determining best-case strategies, along with perhaps
more efficient MM-SQKD protocols, is a subject of future
work.

Fig. 2. Comparing the effective key rates of our new MM-SQKD protocol
with the M-SQKD protocol in [5]. The M-SQKD protocol is more efficient
but it cannot tolerate high noise levels.

IV. CLOSING REMARKS

We presented a new model of semi-quantum cryptography,
namely the multi mediator model and designed a new protocol
in this scenario. Along the way we proved a general security
result applicable to arbitrary MM-SQKD protocols which
will help future researchers. Many interesting open problems
remain - of particular interest would be designing a more
efficient protocol in this model. Also, developing strategies
to swap between M and MM modes of operation based on
(perhaps changing) noise levels would also be very interesting.
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