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Abstract In this paper, we analyze quantum key distribution (QKD) pro-
tocols through a game theoretic framework. In particular, we assume parties
and adversaries are “rational.” Unlike other game theoretic models, we show
how important key-rate and noise tolerance computations may be performed
through our system allowing for interesting comparisons to the “standard ad-
versarial model” of QKD. We show that, depending on the relative cost of
operating devices, increased noise tolerance and improved secure communica-
tion rates are possible if one assumes adversaries are rational as opposed to
being malicious.

1 Introduction

Quantum key distribution (QKD) allows for the establishment of a secret
key, secure against all-powerful adversaries. Beginning in the 1980’s with the
development of the much celebrated BB84 protocol [1], QKD research has
since flourished both in theory and in practice, with numerous experimental
and even commercial systems. For a general survey of QKD technology, both
the theory and the practice, the reader is referred to [2].

In general, these systems are all analyzed in a standard adversarial model
where any adversary is considered to be simply malicious. However, consid-
ering the cost of operating an attack against a QKD protocol using current
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technology, it is likely that any adversary would need to invest significant time
and resources to launch an attack against such a system. Furthermore, due to
the effects of privacy amplification, any such attack can only slow down or
halt the communication - only with negligible probability would an adversary
actually succeed in learning the final secret key [2,3]. In this sense, it is inter-
esting to ask the question, what would be the motivation for an adversary? To
answer this question, and study the effects of so-called “rational adversaries”
one must consider a game theoretic model of security, often used in classical
cryptography [4] to understand the behavior and dynamics of systems under
attack by adversaries who have a rational motivation as opposed to simply
attacking for the sake of attacking.

In this paper we investigate such a game theoretic model, extending prelim-
inary work we did in a recent conference paper [5]. While we are not the first
to apply game theory to QKD security (we review prior approaches in the next
section), the model we propose in this work is the most flexible and general
purpose, allowing for critical noise tolerance and efficient computations to be
performed. These computations are highly important, first, to understand how
the protocol would behave in “real-world” scenarios assuming rational adver-
saries. Second, they are also critical in comparing the performance of different
protocols, and, very importantly from our perspective to allow for a comparison
between the game-theoretic model, and the standard adversarial model. Such
a comparison was impossible before our work and so it wasn’t clear what, if
any, benefit could be attained by considering rational adversaries. We show in
this work, that the game theoretic approach can actually lead to more efficient
communication systems in some scenarios or support higher noise tolerances.
Thus, by assuming rational adversaries, increased secure communication rates
may be possible.

We note that there have been other attempts at creating alternative secu-
rity models for quantum cryptography, weakening the power of the adversary
below the status of “all-powerful.” Two prominent examples are the quan-
tum bounded storage model [6] and the noisy storage model [7], both of which
make assumptions on the memory capabilities of an attacker. While ultimately
a weaker form of security, such assumptions allow for increased cryptographic
functionalities which are impossible in the standard adversarial model, along
with potentially increased performance of QKD protocols [8]. We are propos-
ing an alternative, game-theoretic model of security in this paper which allows
one to rigorously analyze adversaries who are “rationally motivated” as op-
posed to simply being malicious. That is, we are able to analyze the behavior of
quantum protocols when they are faced by adversaries who have, for instance,
cost limitations on their attack capabilities. Rational models of cryptography
have been investigated for classical cryptographic and communication systems
(see the Related Work section below) leading to interesting insights in secure
communication [9].

In this paper, we show that by considering rational adversaries for QKD
systems, one may possibly attain improved performance and noise tolerance
of systems beyond the capabilities of the standard adversarial model. One po-
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tential motivation for our security model could be in the near future where
attacking a QKD system would be expensive, requiring components similar
in cost to that of the users (e.g., photon detectors and sources) while provid-
ing only the ability to gain minimal information. If QKD systems are to be
adopted, first, by large corporations and government agencies, such a rational
model may make sense and, as demonstrated in our work, can cause increased
communication rates. Alternatively, one may consider the rational approach,
with its ability to effectively factor in cost of devices, to be used to motivate
other alternative models of security, such as the previously mentioned bounded
and noisy storage models (though we leave that as interesting future work).
Finally, by analyzing alternative models of security, one can often discover
novel theoretical insights into systems and perhaps develop new applications
of quantum cryptography beyond QKD. Our work here lays the groundwork
for such rigorous future investigations.

We make several contributions in this work. Extending our preliminary
work in our conference paper [5], we propose a general-purpose framework
allowing for a game-theoretic analysis of QKD protocols. Our method is the
first such framework to allow for critical security computations, as mentioned,
and we demonstrate this on several protocols and attack scenarios. Further-
more, unlike our conference paper, the method proposed in this work requires
fewer assumptions made on the part of the honest users, which makes it more
useful. We show how our method can be applied to practical, real-world de-
vices (which, to our knowledge, has never been considered in any previous
game-theoretic approaches). Finally, we make several interesting observations
about the efficiency and noise tolerances of QKD protocols operating against
rational adversaries. In particular, we show that, under natural assumptions,
if an adversary is rational, as opposed to simply malicious, users may increase
QKD key generation rates beyond what is possible in the standard adversarial
model.

Note that, in this work, we only consider the theoretical asymptotic limit
of the QKD systems under investigation. Such work is useful to show the the-
oretical behavior and potential of systems. We leave as future work, a rigorous
analysis of these protocols under finite-key settings. Here, one must take into
account also the cost of sampling along with finite key effects. Such challenges
are very interesting, and certainly important to undertake, though out of scope
for this work. Our model, however, can be extended to the finite key realm,
one must, however, consider other costs, such as the amount of sampling to use
in order to attain accurate channel characteristics (which would be “costly”
for A and B) along with sub-optimal error correction (which would be a gain
for the adversary).

1.1 Related Work

For some time, game theory has been successfully applied to study classical
cryptography [10–12] (also see [4] for a general survey) and in Cyber Physical
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System security [13–16,9,17]. One important contribution of game-theoretic
approaches for network communication security is the economics of informa-
tion security. As networks play an increasingly important role in modern so-
ciety, new types of security and privacy challenges arise and involve direct
participation of network agents. These agents are individual devices or soft-
ware, acting on their own behalf as independent decision makers, they can be
selfish, malicious, or anything in between. Security decisions based on game-
theoretic approaches help to allocate limited resources, balance perceived risks,
and take into account the underlying incentive mechanisms of behaviors of the
other agents in the network.

Attempts to apply game theory to quantum cryptography have begun only
recently. In [18], a novel quantum secret sharing scheme was analyzed through
game theoretic means. This same protocol was then used as a subroutine in
[19] to solve a quantum version of the “millionaire’s problem,” using also a
rational third party. A quantum bit commitment scheme was proposed in [20]
and, assuming rational parties, was proven secure in a game theoretic sense,
thus showing an interesting advantage to this model, as perfect security in
the standard adversarial model of bit commitment is impossible even with
quantum communication [21].

A rational quantum state sharing protocol was proposed in [22] with a
goal of sending a quantum state to a designated receiver through the help
of additional, rational, parties. Secure direct communication protocols, whose
goal is to send a message directly from A to B, was proposed in [23] and ana-
lyzed using game theoretic methods. However, their protocol did not consider
a third-party attacker; instead, only A and B were considered and they could
either choose to “run the protocol”, “stay silent”, or “cheat.”

The prior work described above all involved cryptographic protocols differ-
ent from quantum key distribution (QKD). Some recent work, however, has
been made in attempting to apply game theory to QKD. A cooperative game
was developed in [24] to establish a quantum network which consisted of QKD
links capable of relaying information between nodes. However, in that work,
QKD was only used as a tool - the primary use of game-theory was in analyz-
ing the nodes so as to construct an optimal network topology for a vehicular
network (i.e., game theory was used to analyze the classical problem and QKD
was only used as a tool to establish information theoretic secure keys between
nodes).

In [25], game theory was used to directly analyze the BB84 QKD protocol.
In their model, a three-party game was constructed, with the three parties
being A, B, and the adversary E. The strategy space of each participant was
to choose a basis (either Z or X) from which to send and receive quantum
states in. Thus, the game consisted of A choosing a basis to encode information
in (her key-bit information); E choosing a basis to “attack” (using a measure-
resend strategy); and B finally choosing a basis to measure in, attempting to
learn A’s key-bit information. This was the first attempt, to our knowledge, to
analyze QKD through game theoretic means, however it did not have a goal of
actually establishing a key between A and B; instead, the goal was for A and
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B to detect the adversary E while E’s goal was to avoid detection. Our model
will incorporate goals related directly to the efficiency of key distillation after
quantum communication and privacy amplification are run.

A new model was recently proposed in [26] and is, perhaps, the closest
to our work. There, the authors analyzed two QKD protocols, namely the
LM05 protocol [27] and the so-called Ping-Pong protocol [28]. Both of these
protocols require a two-way quantum channel (sending qubits from A, to B,
then back to A). A two-player game was proposed (where one player is the
joint A and B party while the second player is the rational adversary E).
The strategy space for the AB player was to run the protocol or to run a
variant of the given protocol. Parties did not have a choice to “abort” or to
choose between the Ping-Pong protocol or the LM05 protocol (instead, two
different games were analyzed for the separate protocols). The goal of the
adversary was to maximize her information on the distilled raw-key while also
avoiding detection. The goal of the AB player was to maximize their mutual
information. However, key-rate computations and communication efficiency
were not considered in [26]. Also, avoiding detection is a difficult concept to
put into practice as there is always natural noise in the quantum channel [2,
3].

In a recent conference paper, we proposed a different approach [5]. As in
[26], we consider a two-party game, merging A and B into a single rational
entity; we also consider mutual information and adversarial information gain
to be goals of the two parties. However, for our framework, we introduced
the idea of decoy iterations (not to be confused with decoy states in standard
QKD research [29]) to attempt to find protocols that were “cheap enough” for
A and B to be motivated to run them, but “expensive enough” to discour-
age E from attacking too much. Unlike [26], our framework did not consider
probabilities of detection but our method did, importantly, allow for secure
key-rate computations. This allowed us to show a direct advantage to rational
models of security over standard adversarial models in that, for certain noise
scenarios, we showed greatly increased secure communication efficiency (such
results were not considered in prior game theoretic frameworks for QKD). It
also allowed us to prove interesting noise tolerance results for rational adver-
saries. Finally, we also analyzed cases where parties had choices of multiple
protocols or to simply “abort”, which is an important option in standard QKD
research.

However, our previous method only considered certain game theoretic so-
lutions and required a short term secret channel between users to allow them
to select a strategy. In this paper, we extend our initial conference paper to
remove this necessity of the secret channel and also consider a stronger game
theoretic solution. We also extend our analysis to a broader range of channels
and design considerations.
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1.2 Game Theoretic Concepts

We now introduce the game theoretic concepts necessary to understand our
work. Given a tuple q = (q1, · · · , qn) we write q−i to mean the n − 1 tuple
consisting of all qj for j 6= i; i.e., q−i = (q1, · · · , qi−1, qi+1, · · · , qn).

Definition 1 (Normal Form Game) An n−player normal form game G is
a tuple (N,S, u), where:

– N = {1, · · · , n} is a set including all the players.
– S = {S1, · · · , Sn} where Si is a nonempty set, called player i’s strategy

space.
– u = {u1, · · · , un}; ui: S1 × · · · × Sn → R is a utility function for player i.

Definition 2 (Best Response (BR)) For agent i, a best response to s−i =
(s1, . . . , si−1, si+1, . . . , sn) is a mixed strategy s∗i , where s∗i ∈ BR(s−i) iff ∀si ∈
Si, ui(s

∗
i , s−i) ≥ ui(si, s−i).

Definition 3 (Nash Equilibrium (NE)) s∗ ∈ S is a Nash equilibrium of
G iff ∀i, si ∈ BR(s−i).

No player can gain more utility by changing its strategy unilaterally in a
Nash equilibrium, given that the other players’ strategies are fixed. Therefore,
no rational player wants to deviate from Nash equilibrium.

Table 1 Game matrix example.

A
B

S3 S4

S1 (x1, y1) (x2, y2)
S2 (x3, y3) (x4, y4)

(𝑥#,𝑦#) (𝑥',𝑦') (𝑥(,𝑦() (𝑥),𝑦) )

B

𝑆#

B

𝑆'

A

𝑆( 𝑆) 𝑆( 𝑆)

Choice
node

Terminal
node

One
subgame

Fig. 1 Game tree example.

A normal form game is usually represented by a game matrix. As the
example in Table 1, there are two players: A and B. Each of them has two
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strategies to select. Once they have selected a strategy, e.g., player A selects S1

and player B selects S3, then we can find their corresponding utilities from this
game matrix. In the example, A’s utility is x1 and B’s utility is y1. In normal
form games, players know the tuple (N,S, u) and take actions simultaneously.

When players take actions by turns, this game is usually represented by a
game tree, like the example in Fig. 1, and the corresponding game is called an
extension form game. In Fig. 1, player A selects strategies first. After observing
A’s strategy (S1 or S2), player B will select her strategy accordingly. The
extension form game is formally defined as follows:

Definition 4 (Extension Form Game) An n−player (perfect information)
extension form game G is a tuple (N,S,H,Z, χ, ρ, σ, u), where:

– N = {1, · · · , n} is a set including all the players.
– S = {S1, · · · , Sn} where Si is a nonempty set, called player i’s strategy

space.
– H is a set including all the choice nodes.
– χ: H → 2S assigns each choice node several strategies.
– ρ: H → N assigns each choice node a player.
– Z is a set including all the terminal nodes.
– σ: H × S → H ∪ Z is a successor function that gives a successor for each

choice node.
– u = {u1, · · · , un}; ui: Z → R is a utility function for player i on the

terminal nodes.

An extension form game usually contains a part that can be considered
as a smaller game within itself. This smaller game embedded in the original
game is called a subgame.

Definition 5 (Subgame Perfect Equilibrium) s∗ ∈ S is a subgame per-
fect equilibrium of G if and only if for any subgame G′, the subset of s in G′

is a Nash equilibrium of G′. The subgame of G rooted at h ∈ H is the subset
of G to the descendants of H.

A subgame perfect equilibrium is a Nash equilibrium in the extension form
game and it is able to induce a Nash equilibrium in every subgame. In subgame
perfect equilibrium, each player selects a strategy that can finally induce the
maximum utility for itself in every subgame. As in Fig. 1, both player A and
B know the game tuple (N,S,H,Z, χ, ρ, σ, u). The difference with Table 1 is
that player B knows player A’s selection when she is making a decision.

2 Description of Model

As in our conference paper [5], we consider a two party normal form game
where A and B act as one player (denoted AB) and E acts as a second player.
The goal of party AB is to establish a shared secret key as efficiently as pos-
sible. E’s goal, however, is to decrease A and B’s efficiency while remaining
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“within budget.” Since denial of service attacks are a cheap way to decrease an
honest participant’s efficiency to zero, and since such attacks are equally devas-
tating to any point-to-point communication system (including, but not limited
to, QKD), we do not consider these attacks in our work. Instead, we will limit
Eve to attack strategies that induce no more than a certain upper-tolerated
noise level. This also keeps in line with the standard model of QKD security
and will allow us to study the maximal noise tolerance permitted within our
game theoretic model, comparing to the standard adversarial model.

Besides these goals for each player (AB to increase communication effi-
ciency; E to decrease it), utilizing communication resources invokes a cost
penalty. Thus, for AB, while they wish to establish a shared secret key, if
doing so is too expensive (which will depend on many factors including the
noise Eve’s attack induces), they will chose to simply “abort.” Likewise, for
E, if attacking the quantum channel is too expensive, she will prefer not to
attack or to perform a weaker attack.

The motivation behind our model is to provide a rigorous framework to
argue about rational adversaries in order to determine how protocols behave in
this security model. As mentioned in the Related Work section, game theoretic
models have been used in classical security settings with many interesting
results, including the ability to better allocate resources in a network. Due
to the advanced resources needed to optimally attack a QKD protocol in the
standard adversarial model, it makes sense to consider adversaries who are
limited in “budget.” The game theoretic framework described here allows one
to rigorously analyze QKD protocols in such a setting.

We envision the following scenario: To begin, parties A and B advertise
a maximal tolerated noise level Q (i.e., this Q is a publicly known constant).
We enforce that the noise in the quantum channel (either natural noise, or
adversarial noise) be no greater than this value. Based on this Q, and the cost
of A and B’s devices, they may choose to run a QKD protocol or to simply
“do nothing” (which costs them nothing, but, of course, they also gain nothing
from this action). Unlike the standard adversarial model, we assume that if
there is no adversary, then there is still natural noise in the channel (thus, error
correction will still be required, giving E information “for free”). Thus Eve, on
the other hand, knowing Q is allowed to ignore the quantum channel (in which
case, it will still be noisy, but this noise does not relate to Eve’s information
gain) or she may choose to attack the quantum channel, essentially replacing it
with a perfect channel, and probing each qubit sent according to some attack
strategy. Since E is actually rational, AB may make things costly for Eve to
attack thus motivating her to not even bother (unlike the standard adversarial
model where she will always attack). Thus, if we assume the game-theoretic
model of security, we can actually make a plausible distinction between natural
noise and adversarial noise. If A and B can force Eve not to attack, then E will
not have any quantum information on the raw-key (only information leaked
by the error correcting code). This will allow for potentially greater efficiency
as less raw key material must be wasted later. Note that, as in the standard
model, error correction and privacy amplification are still run, though we will
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be able to argue that, if E is rational, she will have less information on the
raw key, thus privacy amplification needs to shrink the key by less.

What gives A and B the ability to make a QKD protocol “costly” for E is
the addition of decoy iterations (note that these are different from decoy states
used in [29] for weak coherent sources). Decoy iterations, which are added ran-
domly into the qubit stream from A to B, will be completely indistinguishable
from real iterations. This can be achieved in a variety of ways. For our work
analyzing BB84 and B92, decoy iterations operate exactly the same as stan-
dard, “real” iterations, namely with A sending a randomly prepared qubit
using the same probability distribution as in the real case. Only later, when
the round is complete, is it divulged whether the iteration was a decoy or real
iteration. Since both iterations run identically and this information is leaked
only afterwards, the decoy and real iterations are indistinguishable to an ad-
versary when the qubit is actually traveling (similar to how those iterations
used for quantum tomography, needed to ascertain the noise in the channel,
are also indistinguishable as they are chosen later).

Though the decoy iteration runs identically to a real iteration, it does not
contribute to the key or in any subsequent sampling to determine the channel
noise - thus it costs Eve to attack such iterations (leading to no gain); of
course it is also costly for Alice and Bob (again, for no gain). Depending on
the relative costs between AB’s protocol and E’s attack strategy, and also
depending on the upper-bound noise limit Q, AB may set the probability
of decoy iterations to a suitably high value, motivating E to not attack while
still keeping AB motivated to run the protocol. If Eve is not attacking, privacy
amplification does not have to shrink the raw key by as much. Of course, decoy
iterations will affect efficiency as they do not contribute to the final key. Thus,
there is an interesting balance and the main question will be: for what noise
levels Q will there exist a setting for the number of decoy iterations, whereby
AB prefer to run the protocol and E prefers not to attack.

More formally, let ΣAB be the set of strategies allowed to party AB. These
are protocols Π(α) (e.g., BB84 [1]) parameterized by a decoy value α ∈ [0, 1]
which may be set arbitrarily by Alice or Bob, but once set is constant and
public knowledge. This value α represents the probability that any particular
iteration is a “real” iteration; that is, 1−α is the probability that an iteration
is used as a decoy iteration. At a minimum, we have protocol IAB ∈ ΣAB ,
where we use IAB to mean the “do nothing” protocol, A and B choose to
immediately abort, receive no secret key, but also expend no resources. For
Eve, we use ΣE to denote her allowed strategies. We denote IE ∈ ΣE , where
IE is the “do not attack” strategy for Eve (she may still listen to the classical
authenticated channel, though).

Knowing Q, party AB will make a choice of strategy in ΣAB . In reality,
since A and B are separate entities, party A will make a choice of strategy
and send this choice to B using the public authenticated channel, who will
always agree to follow (since, in our game theoretic model, both parties act as
one when choosing a strategy). Eve, of course, learns the strategy choice that
AB is playing and she will then choose a strategy of her own based on this
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information. Note that this is an improvement from our conference version [5]
where we assumed the strategy was sent in secret. In our model now, we do not
require this secrecy and, instead, assume E is allowed to choose her strategy
after observing which protocol A and B will use.

Once both AB and E choose their strategies, they will execute their re-
spective protocol/attack for N iterations (where N is arbitrarily long in our
analyses). Of course, standard error correction and privacy amplification pro-
cedures are then run distilling a secret key of size M ≤ N . The overall cost of
the protocol is denoted as cAB . The utility assigned to this outcome for AB
will be:

uAB(M, cAB) = w+
ABM − w

−
ABcAB , (1)

where w+
AB and w−AB are positive weights. We will simply set these to one in

our subsequent analysis.
For Eve, who wishes to decrease the efficiency of A and B’s communication,

we will assume she gains in utility whenever N −M is large (i.e., whenever M
is small). Of course, her attack will also invoke a cost to her, denoted cE . Due
to privacy amplification, the more information E has on the secret key, either
gained through her attack, or by listening to the error correction information,
the smaller the users’ key will be. Thus, we actually define utility in terms
of E’s information gain on the raw key (before error correction and privacy
amplification). The more information she has here, the smaller A and B’s key
will be. Thus, if we let K be E’s information on the raw-key, then E’s utility
will be:

uE(M, cE) = w+
EK − w

−
EcE , (2)

where, again, we will assume both weight values are one. Note that it may
seem odd to define utility in terms of information gained on the raw-key when
it is really the secret key that E wants. However, after privacy amplification,
E will have negligible information on the secret key and so we cannot define
utility in terms of this (she will never gain anything). Instead, we assume she
wants to limit A and B’s communication efficiency by making their secret key
as small as possible, while keeping within a given noise tolerance upper-bound
(as discussed our model does not handle denial of service attacks). This is
equivalent to her being motivated to gain information on the raw key as this
will directly correlate to a smaller key.

We use UAB(Π(α),A) and UE(Π(α),A) to denote AB’s (respectively E’s)
expected utility when protocol Π(α) is used by AB and attack A is used by
E for Π(α) ∈ ΣAB and A ∈ ΣE .

In our conference paper, we analyzed the conditions under which strict
Nash Equilibrium could exist. Namely, we considered noise scenarios whereby
there could exist a value of α, such that (Π(α), IE) is a strict Nash Equilibrium.
Here, it was assumed that Π(α) was a standard protocol (such as BB84 [1]
or B92 [30]) augmented with the before mentioned decoy iterations. IE , of
course, was the “do nothing” attack for E (though she still gained information
by listening to the error-correction information; recall that, absent Eve, we
assume there is still natural noise).
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In this paper, however, we improve the solution concept and, instead, an-
alyze the game as an Extension Form Game whereby A will broadcast, in
the clear, using the authenticated channel, the strategy choice (our conference
paper required this to be sent in secret). In our extension here, therefore, E
actually can adapt her strategy based on knowledge of AB’s choice. This is
a more realistic model with fewer requirements on the users. We will analyze
under what noise conditions Q does there exist a value α such that (Π(α), IE)
is a subgame perfect equilibrium. Furthermore, what will be the resulting ef-
ficiency of the system (which depends on Q and also α since decoy iterations
are useless for key distillation). Under such a solution concept, assuming a
rational adversary, it holds, then, that:

1. After A divulges the choice of Π(α) (which includes both the protocol and
the choice of α, E will be motivated only to perform the “do nothing”
attack. This implies the noise in the channel will be due to natural noise
(as E did not replace the channel with a perfect one and then probe the
qubits with an attack of her choice).

2. Assuming E is rational, if such an α exists, it can be assumed that E did
not attack. Thus, only information is leaked due to error correction and
one can assume that I(A : E), the mutual information held between A and
E before error correction, is zero. Thus, less raw-key material must be lost
due to privacy amplification. Depending on the choice of α (which, as we
will see, depends on several factors including Q and the cost), this may
lead to more efficient secure communication rates.

3. A and B are actually motivated to run the given protocol Π(α).

We analyze BB84 [1] and B92 [30] protocols in our model assuming inter-
cept resend attacks looking for the noise conditions under which an α exists
satisfying our game theoretic solution. Following this, we consider practical
devices and imperfect sources.

3 Perfect Qubit Scenario

We first consider the case where A, B, and E are restricted to perfect qubit
channels. This is also the scenario considered in our conference paper [5]
(though, there, as mentioned, we used a different game solution mechanism),
and also the scenario considered in all other game-theoretic analyses of QKD
we are aware of, as discussed in the Related Work section. In a later section
of this paper, we will consider practical devices including imperfect sources
(e.g., sources that emit multiple photons with non-zero probability) and lossy
channels.

For this analysis, we let ΣAB , the strategy set allowed for AB to be

ΣAB = {IAB , Π(α)
BB84, Π

(α)
B92}, where IAB is the “do nothing strategy,” Π

(α)
BB84

is the BB84 protocol [1] augmented with decoy iterations, and Π
(α)
B92 is the B92

protocol [30], again augmented with decoy iterations. Recall that the proba-
bility of any iteration being used as a decoy is 1 − α. As these are perhaps
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Parameter Description
CS E’s initial cost to setup her attack equipment. This can include

splicing into the quantum channel and replacing a noisy channel
with a perfect one from which her attack may “hide” in the original
natural noise. We include this parameter for completeness, though
we actually consider this to be “free” in our analysis later.

Cauth The cost for A and B to use the authenticated classical channel.
This will be a one-time cost.

CM This represents the cost to operate a single measurement device
capable of detecting one quantum state (e.g., a single SPAD de-
vice). We use a function γx to denote the multiplicative cost in-
crease of requiring a measurement apparatus capable of detecting
x different states. Thus, for example, to measure in two bases (four
states), the cost would be γ4CM . For example, γx = 1 for all x
and γx = x.

CP This represents the cost to operate the hardware necessary to
prepare a qubit state. We use γxCP to denote the cost of operating
the hardware necessary to prepare x possible states.

CR The cost to produce a single uniform random bit. If a δ-biased bit
is required, we will assume this costs h(δ)CR.

Table 2 Parameters used to compute the cost of a protocol or attack.

the two most commonly implemented protocols in practice, it makes sense to
consider both of these. Furthermore, since the hardware requirements are also
similar, it also gives an interesting comparison in the rational model.

3.1 Notations

To determine the cost of these protocols, we must parameterize the cost of
certain basic operations. This parameterization will also be used to compute
the cost of E’s attack. We use the same cost variables as in our conference
paper [5] which are described in Table 2.

Using these values, we may compute the cost of running BB84 for N
iterations as:

CAB(Π
(α)
BB84) = N [(3 + h(α))CR + γ4(CP + CM )] + Cauth. (3)

The (3 + h(α))CR term accounts for the total number of random bits needed
on a single iteration (here, A must choose a key-bit; A and B must both
choose a basis; and finally, A must decide whether this is a decoy iteration or
not, with probability α). Note that we are considering the unbiased version
of BB84 here, thus basis choices are uniform; analyzing the asymmetric case,
where basis choices are biased [31], may be interesting future work. Finally,
the γ4(CP + CM ) term accounts for the fact that A must be able to prepare
four different states while B must be able to measure in two bases, with an
outcome of four different states. As we combine A and B as one player, their
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total cost is the cost associated to each of their devices, thus we must add
both terms here.

For B92, the cost is found to be:

CAB(Π
(α)
B92) = N [(2 + h(α))CR + γ4CM + γ2CP ] + Cauth. (4)

The function clearly takes into account that B92 is a “cheaper” protocol to
implement. First, there are fewer random choices (as A need not choose a
basis independently - her key choice determines the basis). Also, there are
fewer states that A must prepare (2 as opposed to 4).

We must now consider E’s attack space. As in our conference paper [5], we
will consider Intercept/Resend (IR) attacks. These IR attacks consist of Eve
intercepting all qubits and measuring in a particular basis; based on this basis
measurement result, she will forward a newly prepared qubit in the state she
observed. To ensure that the noise level remains below the given maximum
threshold Q, we will additionally introduce a parameter p, which will be the
probability that she performs this attack (with probability 1−p, she will simply
forward the qubit to B without disturbing it - as E is the source of noise when
she chooses to attack, the qubit will reach B in the same state that A sent
it). We will simply assume that E chooses p so as to maximize the probability
of her attacking (thus maximizing her information gain), while keeping the
noise induced by her attack at exactly Q (recall, when E chooses to attack,
she replaces the noisy channel with a perfect one and then her attack is the
only source of noise; however if she chooses not to attack, the source of noise
is natural). Other scenarios and choices of p we leave as future work. It is not
difficult to define the cost of such an attack, regardless of basis choice, as the
following:

CE = N(h(p)CR + pγ2(CM + CP )) + CS . (5)

(Note that we do not invoke a cost to E if she chooses not to attack based on
her parameter p.)

Let {|v0〉 , |v1〉} be any orthonormal basis that E may use for her IR
attack. We restrict our attention to three particular, common, choices: the
Z = {|0〉 , |1〉} basis, the X = {|+〉 , |−〉} basis, and the Breidbart basis B
(spanned by states |v0〉 = cos π8 |0〉+ sin π

8 |1〉 and |v1〉 = sin π
8 |0〉 − cos π8 |1〉).

E’s attack strategies, therefore, are denoted as ΣE = {IE , Z,X,B}, where IE
is the “do not attack” strategy.

To finalize the utility computation for both AB and E, we must determine
the mutual information between A and E, denoted I(A : E), for each of her
possible attacks. This is needed for E’s utility, and also needed to determine
the final key size for AB’s utility. Indeed, using results from [32], we know the
key-rate may be computed as I(A : B) − I(A : E). In our conference paper
[5], we worked out the value of I(A : E) for any basis choice, and in particular
for the three bases of interest. If we denote by I(Π(α),A) to be the value of
I(A : E) given that the protocol chosen was Π(α) and the attack chosen was
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A, these computations yield:

I(Π
(α)
BB84, Z) ≈ .378Q I(Π

(α)
BB84, X) ≈ .378Q I(Π

(α)
BB84, B) ≈ 1.596Q (6)

I(Π
(α)
B92, Z) ≈ .918Q I(Π

(α)
B92, X) ≈ .918Q I(Π

(α)
B92, B) ≈ 0

(for details on these information computations, the reader is referred to our
conference paper [5]). Finally, using this notation, we have the utility of party
AB, UAB , and the attacker E, UE , under different strategies as the following:

UAB(Π(α),A) = ηαN(I(A : B)− I(Π(α),A))− CAB(Π(α)) (7)

UE(Π(α),A) = ηαN(I(Π(α),A) + h(Q̄))− CE
UE(Π(α), IE) = ηαN(h(Q̄))− CE

where Q̄ is the bit error rate for the given protocol and η is the probability
that a non-decoy iteration contributes to the raw key (i.e., the probability
that A and B choose compatible bases and, in B92’s case, that there was no
indeterminate measurement). For BB84, η = 1/2, while for B92, η ≤ 1/4.
Note that, above for E’s utility, we used not only I(·) (from Equation 6),
but also the fact that she gains information leaked through error correction
proportional to h(Q̄). Here, Q̄ = Q for BB84 and Q̄ = 2Q

1+2Q for B92.

Computing I(A : B) requires only the noise in the raw key (before error
correction and privacy amplification); for BB84, this quantity is easily seen
to be simply 1 − h(Q). For B92, this quantity is found to be 1 − h(Q̄) where
Q̄ = 2Q/(1 + 2Q). Combining everything, we can compute the needed utility
functions.

3.2 When (Π
(α)
BB84, IE) is a Subgame Perfect Equilibrium

We now prove a theorem showing for what noise level Q an α exists whereby

(Π
(α)
BB84, IE) is the only subgame perfect equilibrium.

Theorem 1 Assume classical resources are free, namely CS = Cauth = 0
(note, setting CS = 0 is a strong assumption in favor of the adversary). Also
assume randomness is free for the adversary (again, a strong assumption in
favor of the adversary). If there exists α ∈ (0, 1) satisfying:

CR + (γ4 − γ2)CP
1
4 + 1

4h( 2Q
1+2Q )− 1

2h(Q)
< α < 5.013γ2(CM + CP ), (8)

then (Π
(α)
BB84, IE) is the only subgame perfect equilibrium.

Proof The game tree of this extension form game is shown in Figure 2, where
the utility values are summarized in Table 3. We first show that, if AB choose

Π
(α)
BB84, then IE is the preferred strategy for E, given a suitable choice of α.

When the cost of applying an attack is not neglectable, Eve will consider a
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(𝑥#,𝑦#) (𝑥',𝑦') (𝑥(,𝑦()

(𝑥),𝑦) ) (𝑥*,𝑦*) (𝑥+,𝑦+)(0,0) (0,0) (0,0)
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E

E

E
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𝐼12 Π3'
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𝐼4
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𝐼4

𝐼4B

B

B

Fig. 2 Game tree of the extension form game for the perfect qubit scenario.

Table 3 Utility values xi (for AB) and yi (for E) based on Equations 6 and 7

E
AB

Π
(α)
BB84

IE
UAB = x1 = α

2
(1 − h(Q)) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = y1 = α
2
h(Q)

Z/X
UAB = x2 = α

2
(1 − h(Q) − 0.378Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = y2 = α
2

(h(Q) + 0.378Q) − [h(2Q)CR + 2Qγ2(CM + CP )]

B
UAB = x3 = α

2
(1 − h(Q) − 1.596Q) − [(3 + h(α))CR + γ4CM + γ4CP ]

UE = y3 = α
2

(h(Q) + 1.596Q) − [h(4Q)CR + 4Qγ2(CM + CP )]

E
AB

Π
(α)
B92

IE
UAB = x4 = α

4

(
1 − h

(
2Q

1+2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = y4 = α
4
h
(

2Q
1+2Q

)
Z/X

UAB = x5 = α
4

(
1 − h

(
2Q

1+2Q

)
− 0.918Q

)
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = y5 = α
4

(
h
(

2Q
1+2Q

)
+ 0.918Q

)
− [h(2Q)CR + 2Qγ2(CM + CP )]

B
UAB = x6 = α

4

(
1 − h

(
2Q

1+2Q

))
− [(2 + h(α))CR + γ4CM + γ2CP ]

UE = y6 = α
4
h
(

2Q
1+2Q

)
− [h(4Q)CR + 4Qγ2(CM + CP )]

choice with the least cost as a rational player. In other words, IE should bring
the highest utility value for Eve. For this to be true, we require y1 > y2 and
y1 > y3. This requires:

y1 > y2 ⇐⇒
α

2
h(Q) >

α

2
(h(Q) + .378Q)− 2Qγ2(CM + CP )

⇐⇒ α < 10.582γ2(CM + CP ).
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Similar algebra shows that y1 > y3 ⇐⇒ α < 5.013γ2(CM + CP ). Thus, for
both to be satisfied, we must require that:

α < 5.013γ2(CM + CP ). (9)

Next, we require, for any best response of E to Π
(α)
B92, AB get a higher

reward for playing Π
(α)
BB84 for suitable α (assuming, also, that α is such that E

prefers IE in the BB84 case). First we determine E’s best response to Π
(α)
B92;

in particular, we determine the maximum of y4, y5, and y6. It can be shown
that:

y5 = y4 + .2295αQ− 2Qγ2(CM + CP )

y6 = y4 − 4Qγ2(CM + CP ).

Thus, y6 < y4. Let ∆ = y5 − y4 = .2295αQ − 2Qγ2(CM + CP ). However,
Equation 9 implies that ∆ < 0. Indeed:

α < 5.013γ2(CM + CP ) < 8.714γ2(CM + CP )

=⇒.2295αQ < 2Qγ2(CM + CP )

=⇒∆ < 0.

Thus, we have y4 is the largest of these three values implying that the best

response for E, in the event AB choose to play Π
(α)
B92, is IE . With this consid-

eration, we require x1 > x4 implying that, with this knowledge in mind, AB

prefer to play Π
(α)
BB84. This requirement yields:

α

2
(1− h(Q))− ([3 + h(α)]CR + γ4[CM + CP ])

>
α

4
(1− h

[
2Q

1 + 2Q

]
)− ([2 + h(α)]CR + γ4CM + γ2CP )

⇐⇒ α

(
1

4
+

1

4
h

[
2Q

1 + 2Q

]
− 1

2
h(Q)

)
> CR + (γ4 − γ2)CP .

A graph of 1
4 + 1

4h
[

2Q
1+2Q

]
− 1

2h(Q) is shown in Figure 3 and for all Q it holds

that this expression is positive. Thus, we conclude that, for x1 to be larger

than x4 (i.e., Π
(α)
BB84 to be preferred over Π

(α)
B92), we must have:

α >
CR + (γ4 − γ2)CP

1
4 + 1

4h
(

2Q
1+2Q

)
− 1

2h(Q)
. (10)

Also, AB will not select IAB because x1 > 0. Therefore, if an α exists

satisfying both Equation 9 and 10, (Π
(α)
BB84, IE) is the only subgame perfect

equilibrium completing the proof.



Title Suppressed Due to Excessive Length 17

Fig. 3 A graph of 1
4

+ 1
4
h
[

2Q
1+2Q

]
− 1

2
h(Q) used in Theorem 1

3.3 Evaluation

Let us look closer at Theorem 1 in order to understand its actual meaning. In

particular, we wish to determine for what values of Q, (Π
(α)
BB84, IE) is actually

a subgame perfect equilibrium. Namely, how much noise can be tolerated in
our model. Clearly, looking at Equation 8, we require:

CR + (γ4 − γ2)CP
1
4 + 1

4h
(

2Q
1+2Q

)
− 1

2h(Q)
< 1,

as, otherwise no α ∈ (0, 1) could possibly exist. This gives us some constraint
on the cost of preparing a qubit. To evaluate, let us assume randomness is
also free for AB and, so, set CR = 0. Note that, in this case, if γ4 = γ2, this
expression is always satisfied. If γ4 > γ2, then we must have:

CP <
1

γ4 − γ2

(
1

4
+

1

4
h

(
2Q

1 + 2Q

)
− 1

2
h(Q)

)
. (11)

A graph of the right-hand-side of Equation 11 is shown in Figure 4. So long
as the cost of preparing a photon is less than this function, it is possible that

an α exists making (Π
(α)
BB84, IE) a subgame perfect equilibrium.

However, that alone, is insufficient. Next, to satisfy the main equation in
Theorem 1, we also need (again, assuming CR = 0):

(γ4 − γ2)CP
1
4 + 1

4h( 2Q
1+2Q )− 1

2h(Q)
< 5.013γ2(CM + CP ) (12)

Let’s write CM = x · CP for some x > 0 (generally, x should be larger
than 1 as measurements are often more complicated to perform than state
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Fig. 4 The cost CP must be below this line for there to exist an appropriate choice of α.
(Note, as mentioned in the text, this is not sufficient.) Showing here for γ4 − γ2 = 6 (Solid),
2 (Dashed), and 1 (Dotted). Notice that, the more “expensive” the difference, the cheaper
the cost of preparing a state must be for parties to be motivated to run the protocol.

preparation). In that case, the above inequality simplifies to:

(γ4 − γ2)CP
1
4 + 1

4h( 2Q
1+2Q )− 1

2h(Q)
< 5.013γ2CP (x+ 1)

⇐⇒ γ4 − γ2 < 5.013γ2(x+ 1)

(
1

4
+

1

4
h(

2Q

1 + 2Q
)− 1

2
h(Q)

)

⇐⇒ 0 < 5.013γ2(1 + x) ·
(

1

4
+

1

4
h

(
2Q

1 + 2Q

)
− 1

2
h(Q)

)
− γ4 + γ2. (13)

Notice that this inequality depends only on the noise Q and the relative cost
of preparing versus measuring states along with the relative cost of preparing
or measuring 4 versus 2 states. A graph of the right-hand-side of Equation 13
is shown in Figure 5. The right hand side of this equation must be positive in
order for an α to exist satisfying the desired game theoretic property - namely
AB will run the protocol while E will not be motivated to attack (though
there still will be natural noise in the channel and, so, E will gain information
from error correction).

For a given noise level Q, assuming A and B’s devices are such that Equa-
tion 11 are satisfied and Equation 13 is satisfied, one may find an α such that

(Π
(α)
BB84, IE) is a subgame perfect equilibrium. The key-rate is easily com-

puted as α 1
2 (1− h(Q)) which, depending on the cost of the devices (affecting

the choice of α) may lead to more efficient communication rates than in the
standard adversarial model (where the key-rate there would be 1

2 (1− 2h(Q))
[33]).
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Fig. 5 Showing a graph of Equation 13 (the right-hand-side) for x = 1, γ2 = 2 and γ4 = 8
(Solid line), γ4 = 4 (Dashed line), and γ4 = 3 (Dotted line). As long as the noise in the
channel Q (x-axis) is such that the curve above is positive, an α may exist satisfying the
desired game-theoretic property (one also needs Equation 11 as shown in Figure 4 to be

satisfied), namely AB will be motivated to run Π
(α)
BB84 and Eve will not be motivated

to launch a quantum intercept-resend attack. This gives an upper-bound on maximal noise
tolerance in the game theoretic model. Note that, for decreasing γ4 in this case, the maximal
noise tolerance increases.

4 Analysis with Practical Sources

We next consider practical sources and fiber channels. For this, we will only

consider AB’s strategy space to consist of Π
(α)
BB84 or IAB . E’s strategy space

will consist of IE or A, where A is an optimal attack against the system
(perhaps requiring a quantum memory system). To determine utility functions,
we require the key-rate of the protocol assuming practical sources along with
the information gained by an adversary performing an optimal attack. For
this, we will use results in [34] which computed these values for BB84.

4.1 Notations

To model the channel noise (which may be natural noise in the event E uses IE
or adversarial noise if she replaces the noisy, and lossy, channel with a perfect
one and uses A which simulates the natural noise and loss in the original
channel), we will assume A’s source is a weak coherent source, emitting n
photons with probability pn where:

pn =
µn

n!
e−µ, (14)

and where µ is the intensity of the laser, chosen by A. We assume a fiber
channel of length ` in which case, the probability of transmittance is:

η = 10−α`/10, (15)

where we will use α = .15dB/km.
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Again, using notation from [34], let Yn be the probability that B observes
a conclusive result (i.e., not a vacuum signal or double click) given that A
sent n photons. In this case, we define Rn to be the sifting rate in the case
of n photons and this is simply Rn = pnYn. The total sifting rate, given
intensity setting µ, is defined to be Rµ =

∑
nRn. The average error in the

distilled raw key will be denoted Qµ =
∑
nQnRn/Rµ, where Qn is the error

rate conditioned on A sending n photons. From this, it was shown that the
key-rate r in the standard adversarial model is:

r = R1(1− h(Q1))−Rµh(Qµ). (16)

Obviously, if E chooses not to attack, then the only loss in efficiency will be
due to information leaked through error correction. In this case, we have:

rno−attack = αRµ(1− h(Qµ)). (17)

where 1 − α is, as usual, the probability of a decoy iteration (which do not
contribute to the secret key). Note that, if E chooses to not attack, we assume
she is also not performing any photon number splitting (PNS) attack which
makes sense as this would be expensive to operate; whereas if she does choose
to attack, she performs a PNS attack on any multi-state photon pulse (gaining
full information since, in this section, we assume she has access to a perfect
quantum memory) while probing, optimally, all single-photon emissions (thus
learning something about the key information).

Clearly Qµ and Rµ are observable quantities while individual Qn and Rn
are not. However, they can be bounded as shown in [34]:

Rµ −
1

2

∑
n≥2

pn ≤ R1 ≤
1

2
p1. (18)

Naturally, it is in E’s best interest to set R1 as low as possible since E attains
full information whenever A sends out 2 or more photons due to the Photon-
Number-Splitting (PNS) attack. Thus, we assume the worst case that:

R1 = Rµ −
1

2

∑
n≥2

pn = Rµ −
1

2
(1− p0 − p1).

Finally, we may also estimate [34]:

Q1 = min

(
QµRµ
R1

,
1

2

)
.

Note that we are not considering the decoy-state protocol [29] which may
lead to better results in our game theoretic model (one must have both decoy-
states and decoy-iterations and we leave this analysis as future work).

If E decides to attack using this optimal strategy she gains full information
on any multi-photon pulse. She also gains information proportional to h(Q1)
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on single photon emissions. Therefore, her total information gain is no more
than:

R1h(Q1) +
∑
n 6=1

Rn +Rµh(Qµ) = R1h(Q1) + (Rµ −R1) +Rµh(Qµ). (19)

Note that the Rµ(Qµ) term is the information leaked from error correction. Of
course, if she does not attack, then she gains only Rµh(Qµ) due to information
leaked during error correction. Given this scenario, we are in a position to prove
our second theorem of this work, showing sufficient conditions on the noise Q,

and the distance ` which allows for there to exist an α whereby (Π
(α)
BB84, IE)

is a subgame perfect equilibrium.

4.2 When (Π
(α)
BB84, IE) is a Subgame Perfect Equilibrium

(𝑥#,𝑦#) (𝑥',𝑦') (𝑥(,𝑦() (𝑥),𝑦) )

AB

E

Π+)
(,)𝐼./

𝐼0 A

E

𝐼0 A

Fig. 6 Game tree considering optimal attack under practical channel.

Theorem 2 Let ΣAB = {IAB , Π(α)
BB84} and ΣE = {IE ,A} where Π

(α)
BB84 is

implemented using practical sources and measurement devices and where A is

an optimal attack as discussed. Then (Π
(α)
BB84, IE) is the only subgame perfect

equilibrium if there exists an α ∈ (0, 1) such that:

CAB
Rµ(1− h(Qµ))

< α <
CE

R1h(Q1) + (Rµ −R1)
. (20)
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Proof In this scenario, we have an extension form game as shown in Figure 6.
The values of the utilities are:

x1 = x2 = y1 = 0

y2 = −CE
x3 = αRµ(1− h(Qµ))− CAB
y3 = αRµ(Qµ)

x4 = αR1(1− h(Q1))− αRµh(Qµ)− CAB
y4 = α(R1h(Q1) + (Rµ −R1) +Rµh(Qµ))− CE

We want (Π
(α)
BB84, IE) to be a subgame perfect equilibrium. Therefore, the

best response of Π
(α)
BB84 should be IE , which requires y3 > y4. This condition

leads to the following inequality:

αRµ(Qµ) > α(R1h(Q1) + (Rµ −R1) +Rµh(Qµ))− CE

⇒α < CE
R1h(Q1) + (Rµ −R1)

. (21)

In this case, E is motivated to choose IE rationally as more advanced resources
will be required if she chooses to attack.

Note that, when AB choose IAB , E will choose IE as a response since
y1 = 0 > y2 (so long as CE > 0 which we assume in our game theoretic model).

When AB makes selection between IAB and Π
(α)
BB84, she simply compares x1

with x3 and select the one with a higher utility. When (Π
(α)
BB84, IE) is the

equilibrium, it requires x3 > x1 which results in:

αRµ(1− h(Qµ))− CAB > 0 (22)

⇒α > CAB
Rµ(1− h(Qµ))

. (23)

Under these conditions, AB will never select Π
(α)
BB84, so (Π

(α)
BB84, IE) is the

only subgame perfect equilibrium. This completes the proof.

4.3 Evaluation

To evaluate, we use values for the practical channel as derived in [34]. Namely,
this assumes a weak coherent source and a standard fiber channel. Let pd be
the dark count of B’s detectors and ηeff be their efficiency. We use η to be
the total transmittance of the system, namely:

η = 10−.15`/10ηeff , (24)
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where ` is the length of the fiber channel connecting the two users (in km).
From this, the values we use for observed statistics are (see [34]):

Rµ =
1

2

(
1− (1− pd)2e−µη

)
RµQµ =

1

4

(
1 + (1− pd)e−µFη − (1− pd)e−µV η − (1− pd)2e−µη

)

Estimates on the values R1 and Q1 are discussed above (derived from [34]).

To ensure that (Π
(α)
BB84, IE) is a solution according to Theorem 2, we need

(from Equation 20):

CAB < Rµ(1− h(Qµ)), (25)

thus placing a restriction on the cost of A and B’s devices.
Next, let’s assume that CAB = CE (a very strong assumption in favor of

the adversary as to perform an optimal probe may require perfect quantum
memory - a much more expensive device than A and B’s preparation and
measurement devices). In that case, to satisfy Equation 20, it is easy to see
that we require R1(1 − h(Q1)) − Rµh(Qµ) > 0; thus, the noise and length
tolerances are identical to the standard attack model (as dictated by Equation
16). However, greater efficiency may be possible.

Indeed, to compute the key-rate of the protocol in our game theoretic
model, we require α (see Equation 17). From Equation 25, let CE = CAB =
γRµ(1− h(Qµ)) for some 0 < γ < 1. Then if we set:

α = min

(
γRµ(1− h(Qµ))

R1h(Q1) +Rµ −R1
− ε, 1− ε

)
, (26)

for suitably small ε, the requirements of Theorem 2 are satisfied. The resulting
key-rate evaluation is shown in Figure 7. This shows that, even though noise
and distance limitations are identical in both models, increased efficiency is
possible depending on the cost.

5 Closing Remarks

In this paper, we showed how a rational model of quantum cryptography
may be applied to QKD. Our model allows for important key-rate and noise
tolerance computations for a variety of protocols. In particular, we show that
high noise tolerances are possible (exceeding the standard model if one assumes
rational adversaries and depending on the relative cost of devices) and greater
efficiency is possible, even when using practical devices. There are several
interesting open problems, including an analysis of alternative protocols and
attack scenarios. We also did not consider finite-key effects and only looked at
asymptotic scenarios; analyzing these in our game theoretic framework would
also be interesting.
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Fig. 7 Showing the key-rate of the BB84 protocol under practical device settings and
comparing to the standard adversarial model. As discussed in the text, length and noise
tolerances are identical in both models, however as demonstrated here, even taking into
account the additional decoy iterations, greater efficiency is possible, depending on the cost of
the devices. Solid line: Game theoretic model with γ ≈ 1; Dashed line: Game theoretic model
with γ = 1/2; Dotted line (lowest) standard adversarial model. Here we have pd = 10−5,
Q = .05, ηeff = .1, and µ = .01. Note that, for these device settings, 41km is the maximal
distance allowed for both the standard and game theoretic model.
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