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Abstract

Unconditionally secure key distribution is impossible using classical communication
only. However, by providing Alice and Bob with quantum capable hardware the task
becomes possible. How quantum does a protocol need to be, though, in order to
gain this advantage? In 2007, Boyer et al., proposed “semi-quantum key distribution”
where only Alice need be quantum while Bob need only limited “classical” capabilities.
Several protocols were proposed and proven secure in the “perfect qubit scenario” but
not necessarily against realistic attacks (with one exception being recently published
in (PRA 96 062335)). In this paper, we devise a new SQKD protocol and analyze its
security against certain practical attacks.

1 INTRODUCTION

Quantum key distribution (QKD) allows for the establishment, between two users Alice (A)
and Bob (B), of a shared secret key the security of which is guaranteed even when faced with
an all-powerful adversary Eve (E). Such a task is impossible using classical communication
alone (where security of key distribution always necessarily depends on unproven computa-
tional assumptions being placed on the adversary). However by careful use of a quantum
communication channel, and an authenticated (but not secret) classical channel, this task is
provably secure in a variety of security models. The reader is referred to [1] for a general
survey of QKD protocols and their security proofs.

Recently, in [2], a new class of QKD protocol was proposed whereby severe restrictions
on the quantum capabilities of the user B are placed. In fact, B may only operate in a
“classical” manner by either completely ignoring any incoming quantum signal from A, or
he may only measure and send qubits in a single, fixed, publicly known basis (generally the
computational Z basis {|0〉 , |1〉}). Protocols operating in this model are known as semi-
quantum key distribution (SQKD) protocols.

In more detail, such protocols operate over a two-way quantum communication channel,
allowing A (who has no resource restrictions placed on her) to send qubits to B. These
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qubits may be prepared in arbitrary ways. B, the semi-quantum or “classical” user has a
choice to either:

1. Measure and Resend: If B chooses this operation, he will subject the incoming qubit
to a computational Z basis measurement. He is allowed to output a Z basis qubit.

2. Reflect: If B chooses this operation, he will simply “disconnect” from the quantum
channel and reflect any incoming state back to A without disturbing it (or learning
anything about it).

Regardless of B’s choice, a quantum state may arrive back at A who is free to perform any
quantum operation on it (e.g., measure in an arbitrary basis).

Numerous SQKD protocols have been proposed since the model’s initial introduction in
2007 (see, for instance,[3, 4, 5, 6, 7]). Some have been provided with complete information
theoretic proofs of security [8, 9]. Most of these protocols, however, require the assumption
that “perfect” qubits are traveling on the quantum channel. Indeed, if this assumption were
not taken, then certain attacks such as the photon tagging attack described in [10, 11] are
possible completely breaking the security of most SQKD protocols.

The situation, however, has improved recently. In [12], M. Boyer, M. Katz, R. Liss, and
T. Mor have devised a new protocol based on the use of “mirrors.” Importantly, this pro-
tocol did not require B to prepare fresh qubits. Security against practical (and theoretical)
attacks was proven in terms of robustness - namely, any attack against the protocol which
causes an adversary to potentially learn information on A and B’s key (including attacks
involving an adversary sending multiple qubits or vacuum states) can be detected with non-
zero probability. This protocol is also immune from the photon-tagging attacks mentioned
earlier.

In this work, we propose a different SQKD protocol also designed to counter these so-
called “practical” attacks against it (e.g., multi-photon attacks, photon tagging, or photon
losses). Our protocol is a generalization of one we first proposed in [13] which may be
considered the semi-quantum version of Extended-B92 [14]. It’s security assuming perfect
qubits was recently proven in [15].

There are several contributions made in this work. We discuss a new protocol, modified
from work we did initially in [13], adapted to work in more practical scenarios. The protocol
we discuss in this paper does not require B to prepare fresh qubits. Furthermore, we design
an appropriate mechanism to model its security and propose a novel potential optical im-
plementation of the protocol. Finally, we use our security model to perform an information
theoretic security analysis against certain practical attacks developing a framework from
which future researchers in this area may benefit from.

Naturally, considering the security of any QKD protocol is a far more difficult problem
when “real-world” implementations are used. This problem seems exacerbated in the case
of semi-quantum protocols due to their reliance on a two-way quantum channel and B’s
inability to gather accurate statistics in all measurement bases. While this paper does not
claim to solve all issues pertaining to the difficulties in implementing “practical” SQKD
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protocols, we do attempt to address some of the more challenging problems, namely multi-
photon attacks and tolerance to photon loss. A complete security analysis of this protocol
remains an open problem. As does a comparison to the security properties of the mirror
protocol introduced in [12].

1.1 Notation

We use H(X) to represent the Shannon entropy of random variable X. By h(x) we mean
the binary entropy function h(x) = −x log(x) − (1 − x) log(1 − x), where all logarithms in
this paper are base two. H(A|B) is the conditional Shannon entropy.

Let ρAB be a density operator acting on Hilbert space HA ⊗ HB. Then we write ρA to
mean the result of tracing out the B portion; i.e., ρA = trBρAB. Given an element |ψ〉, we
write [ψ] to mean |ψ〉 〈ψ|. Similarly, for i, j ∈ N, we write [i, j] to mean |i〉 〈i| ⊗ |j〉 〈j|.

If ρA is a density operator acting on Hilbert space HA, then we denote by S(A)ρ to
mean the von Neumann entropy of ρA. We also write S(A|B)ρ to mean the conditional
von Neumann entropy, namely S(A|B)ρ = S(AB)ρ − S(B)ρ = S(ρAB) − S(ρB). When the
context is clear, we will forgo writing the subscript “ρ.” Finally, we define I(A : B)ρ to be
the quantum mutual information.

Given a bit string q ∈ {0, 1}n, we write w(q) to be the Hamming weight of q, namely,
the number of 1’s in the bitstring q. We write 1N to mean 11 · · · 1 (N times).

1.2 General QKD Security

A (S)QKD protocol begins with a quantum communication stage resulting in the distillation
of a raw key. This is a string of N classical bits (one string for A and one for B) which are
partially correlated, and partially secret. An error correcting protocol followed by privacy
amplification results in a secret key of size `(N). Assuming collective attacks (i.e., attacks
whereby E treats each signal independently and identically, but is free to postpone measuring
her ancilla to any future point in time and, furthermore, is free to perform any theoretically
optimal, measurement of her ancilla) then the Devetak-Winter key-rate expression applies.
Namely:

r := lim
N→∞

`(N)

N
= S(B|E)−H(B|A)

While we consider the asymptotic scenario here, the computations we do in this paper to
bound the von Neumann entropy S(B|E) can also be used in the finite key setting using
techniques from [16] (though, there, one must be careful of imperfect parameter estimation
- in this paper we will assume our parameter estimates are arbitrarily accurate leaving this
more complete analysis as future work).
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Figure 1: Our security proof will assume the existence of a box as depicted here, where ρ1 is
a quantum input; ρ2 is a quantum output; c1 is a classical input; and c2 is a classical output.
How the box operates is described in the text.

2 THE PROTOCOL

The protocol is a generalization of one proposed by us first in [13]; the greatest difference
between the two is that we do not require B to prepare fresh qubits. Instead, we assume
B is equipped with a box, depicted in Figure 1, which has one quantum input ρ1, one
quantum output ρ2, one classical input c1, and one classical output c2. This box is capable
of implementing the following functionality:

1. If c1 = 0 (i.e., Reflect), then ρ2 = ρ1 and c2 = 0.

2. If c1 = 1 (i.e., Measure and Resend), then with probability PNC , it holds that c2 = 0
and:

ρ2 =
1

PNC

∑
n≥0

qn[1]⊗n. (1)

Otherwise, with probability pc = 1− PNC , it holds that c2 = 1 and:

ρ2 =
1

1− PNC

∑
n≥0

pn[1]⊗n. (2)

We do not require that pn = qn only that they may be characterized if a known input
to the box is given.

Notice that, if B chooses to Measure and Resend, the box will only output states of
the form |1〉⊗n (i.e., it may output multiple qubits, but each qubit is in the state |1〉). How
the box is actually implemented is irrelevant to our security proof in this paper so long as
the values of pn and qn can be characterized given a known input state. A possible optical
implementation of such a box is shown in Figure 2. Note that if the detector does not click,
it should be that if n photons were inputted into the box in ρ1, there should be n photons
leaving but all in a state of |1〉. Detector efficiency and dark counts will affect the various
probabilities.

The protocol, then, operates as follows:

1. A prepares and sends a qubit in the state |+〉.
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Figure 2: A potential implementation of the semi-quantum box for our protocol. While the
security analysis does not require this particular implementation, our evaluations later will
assume this particular implementation.

2. B will pick a random bit kB to be his potential raw key bit for this iteration. He sets
the input c1 of his box to be this bit (i.e., c1 = kB). He will save the classical output
of his box c2 for use later.

3. A will measure the incoming qubit in either the Z basis or the X basis, choosing
randomly. If she chooses to measure in the Z basis and observes a |0〉, then she will
guess that B’s key bit kB is 0; otherwise, if she measures in the X basis and observes
a |−〉, she will guess that B’s value of kB is 1. Other events are inconclusive.

4. If B’s value of c2 is 1, then he will inform A to discard the iteration. Likewise, if A’s
measurement was inconclusive, A will tell B to discard the iteration. This communica-
tion is done via the authenticated classical channel (and, of course, may be performed
at the conclusion of the quantum communication stage). Thus, only when A receives
a conclusive result and only when B’s box outputs c2 = 0 will the iteration contribute
to the raw key.

It is easy to see the similarities to the B92 [17] protocol (in essence, if A’s source is pure
and the forward channel is not attacked, B is sending |+〉 or |1〉). Of course, the forward
channel may be attacked, a likely scenario that we will need to consider in the security proof
(and is not necessary when proving security of B92). This protocol is also a more general
one than we proposed in [13]. Indeed, that protocol can be considered a particular instance
of this one, where the “box” is such that the dimension of the input and output is 2 (i.e.,
dim ρ1 = dim ρ2 = 2; it is a perfect qubit), and where pn = 1.
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3 SECURITY ANALYSIS

The state leaving A’s lab is publicly known. We assume it is produced by an attenuated
laser pulse, thus the state leaving her lab is of the form:

ρA =
∑
n≥0

an[+]⊗n, (3)

where an is the probability her source emits an n photon pulse, namely:

an = e−µ
µn

n!
,

(i.e., a Poissonian distribution with mean photon number µ).
Eve will attack in the forward direction (i.e., when the signal travels from A to B). Since

we assume she may count the number of photons in the pulse, she may adapt her strategy
based on this count. Namely, she may apply an attack evolving the state in Equation 3 to
the following:

E

(∑
n≥0

an[+]⊗n
)

=
∑
n

qn[n]R ⊗ [En],

where [n]R is an internal register in E’s memory storing the result of her photon counting
attack and where |En〉 is the (without loss of generality pure) state leaving E’s lab in this
case. Due to the concavity of conditional entropy, the result of S(B|E) following the protocol
will be the average over all possible counts of n photons appearing in the above (i.e., the
average of the case had E sent |E1〉 or |E2〉 and so on). Thus, it is to E’s advantage to
simply choose a fixed N that optimizes her entire attack. Therefore, we will assume that
the state leaving E’s lab after her first attack on the forward channel is simply an N qubit
state of the form:

|e〉 := |EN〉 =
∑

x∈{0,1}N
αx |x〉T ⊗ |ex〉E ,

where the T portion of the state will travel to B’s box (on input ρ1) and the E portion will
remain private to E. This latter represents E’s quantum memory which will play a part in
her subsequent attack when the qubit returns. Note that if there is no adversary and if A’s
source is perfect (i.e., p1 = 1), then |e〉 = |+〉. Of course, E is free to prepare whatever she
likes at this stage of the protocol.

The state [e] is input into Bob’s box. In the event he chooses Reflect, leaving his lab
will be [e] and he will save, in an internal register, that his key-bit is 0. If he chooses
Measure and Resend, the state leaving B’s lab is the mixture:

ρ2 = [0]c2 ⊗

(∑
n

qn[1]⊗n
)

+ [1]c2 ⊗

(∑
n

pn[1]⊗n
)
,

as described in Equations 1 and 2 and where we introduce a new register to store the result
of the box’s classical output bit c2 (which he saves). In this event, he will set his key-bit to
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be 1 (though, will later discard the result if c2 = 1). Ultimately, the joint system may, at
this point, be modeled using the density operator:

1

2
[0]B ⊗ [e]T +

1

2
[1]B ⊗

[
[0]c2 ⊗

(∑
n

qn[1]⊗nT ⊗ σ
E
n

)
+ [1]c2 ⊗

(∑
n

pn[1]⊗nT ⊗ σ
′E
n

)]
(4)

It is only to E’s advantage to assume that σEn is pure. For our proposed implementation
shown in Figure 2, σN will indeed be pure (it is not difficult to show that σN = [e11···1]) while
the others may be mixed states. Thus, this assumption will decrease the overall key-rate
compared to a real-world implementation.

At this point, E is free to attack again. Note that, again, E may perform a quantum
non-demolition measurement of the photon number count. If qN = 1, then nothing useful
can be learned from this (as the number of photons leaving B’s lab when his key-bit is 0
is identical to when his key-bit is 1 - i.e., N photons in either case). However, if qN is
smaller than 1, a photon count leaving B’s lab less than N betrays his choice of operation.
Indeed, it is clear that an attack exists causing Eve to gain full information on the key-bit
whenever the photon number count is less than N (the number of photons entering B’s
box). With this in mind, it is clear that this box must be designed so that, when B chooses
Measure and Resend, either the number of photons leaving his lab is equal to the number
entering or the box outputs c2 = 1 (in which case it doesn’t matter as the users will with
certainty, discard the iteration so there is nothing to learn anyway - note that E would still
learn B’s operation, but she cannot change the fact that he will later tell A to discard the
iteration as this information is transported over an authenticated channel). In our proposed
implementation, the value of qN depends heavily upon the efficiency of the detector used.
We will discuss this again momentarily. However, while our security proof does not depend
on the actual implementation, the final key-rate result does indeed, depend on this value qN .

We will assume that E’s attack is chosen so that she only forwards one photon to A,
while “absorbing” the additional qubits from B into her ancilla (allowing her to use them
later to learn B’s operation). We model the second attack operation as a unitary operator
acting on the quantum channel, and E’s private ancilla. Let U denote this attack; without
loss of generality, we may write its action as:

U |EN〉 = |+, f0〉+ |−, f1〉+ |v, fv〉 (5)

U |1〉⊗N ⊗ |σEN〉 = |0, e0〉+ |1, e1〉+ |v, ev〉
U |1〉⊗n ⊗ |σEn 〉 = |0, gn0 〉+ |1, gn1 〉+ |v, gnv 〉 , for n < N,

where |v〉 is the “vacuum” state. Note that we abused notation above and wrote |σn〉;
however, since we are assuming the σn appearing in Equation 4 are pure, such elements
exist. We also abused notation by writing a single attack operator U . Technically, E will
perform a non-demolition measurement of the photon number and apply an operator Un
based on this attack. Clearly, above, the only line that would change would be the third line
(since the first two must be the same U = UN).
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Following this attack on the state shown in Equation 4, the (now single) qubit travels to
A who performs a measurement leading to her “guess” of B’s key. Finally, both A and B will
inform one-another whether to discard or accept this iteration. The final state, conditioning
on it not being discarded, is easily found to be:

ρABE =
1

M
[00]BA ⊗ [F] +

1

M
[01]BA ⊗ [f1] +

qN
M

[10]BA ⊗ [e0] +
qN
M

[11]BA ⊗ [E]

+
∑
n<N

qn
M

([10]BA ⊗ [gn
0 ] + [11]BA ⊗ [Gn]) ,

where we define:

|E〉 =
1√
2

(|e0〉 − |e1〉) |F 〉 =
1√
2

(|f0〉+ |f1〉) |Gn〉 =
1√
2

(|gn0 〉 − |gn1 〉),

and M is a normalization term. In particular, let PKeyi,j be the following (observable)
probabilities:

PKey0,0 = 〈F |F 〉 = Pr(A observes 0 | A chooses Z and B chooses Reflect)

PKey0,1 = 〈f1|f1〉 = Pr(A observes − | A chooses X and B chooses Reflect)

PKey1,0 = Pr(A observes 0 | A chooses Z and B chooses Measure and Resend)

=
∑
n

qnPr(A observes 0 | A chooses Z and B chooses Measure and Resend and n photons leave B)

PKey1,1 = Pr(A observes − | A chooses X and B chooses Measure and Resend)

=
∑
n

qnPr(A observes − | A chooses X and B chooses Measure and Resend and n photons leave B)

Then, M is simply the sum M =
∑

i,j PKeyi,j. Note that from the above, 〈F |F 〉 and 〈f1|f1〉
are directly observable.

We now break ρABE into a “good” case and a “bad” case. The good case occurs when
the number of qubits leaving B’s box is equal to the number entering (which, if B’s box is
built with high efficiency devices, should occur with high probability). The bad case is the
opposite and, at worst, provides to E full information.

Let P̃Key1,0 = 〈e0|e0〉 and P̃Key1,1 = 〈E|E〉. For qN < PNC , these quantities cannot be
directly observed; however they can be estimated. We will comment further on this shortly,
however this notation allows us to write ρABE as follows:

ρABE =
pG
M

 [00]BA ⊗ [F] + [01]BA ⊗ [f1] + qN [10]BA ⊗ [e0] + qN [11]BA ⊗ [E]

PKey0,0 + PKey0,1 + qN P̃Key1,0 + qN P̃Key1, 1︸ ︷︷ ︸
σgood

+
(

1− pG
M

)
σbad,
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where:
pG = PKey0,0 + PKey0,1 + qN P̃Key1,0 + qN P̃Key1, 1, (6)

and σbad is a density operator (in particular it is of unit trace). By concavity of von Neumann
entropy, we therefore have:

S(B|E)ρ ≥
pG
M
· S(B|G)σgood . (7)

Note that, if qN = 1, then pG = M and so the “bad” case never occurs.
At this point, we use a Theorem proven in [18] to bound the entropy in σgood. Invoking

this theorem, and combining with Equation 7, leaves us with the following bound:

S(B|E)ρ ≥
pG
M

(
PKey0,0 + qN P̃Key1,1

pG

[
h

(
PKey0,0

PKey0,0 + qN P̃Key1,1

)
− h(λ1)

])
(8)

+
pG
M

(
PKey0,1 + qN P̃Key1,0

pG

[
h

(
PKey0,1

PKey0,1 + qN P̃Key1,0

)
− h(λ2)

])
where:

λ1 =
1

2

1 +

√
(PKey0,0 − qN P̃Key1,1)2 + 4qNRe2 〈E|F 〉

PKey0,0 + qN P̃Key1,1

 (9)

λ2 =
1

2

1 +

√
(PKey0,1 − qN P̃Key1,0)2 + 4qNRe2 〈e0|f1〉

PKey0,1 + qN P̃Key1,0

 (10)

Computing H(B|A) is trivial given PKeyi,j. We have therefore reduced the problem to

estimating P̃Keyi,j, Re 〈E|F 〉, and Re 〈e0|f1〉. In general, this may be done by taking into
account the unitarity of the attack operation U (in a manner similar to that done for proving
B92 is secure [19]). We will compute bounds on these settings for certain practical attacks
against this system leaving a complete analysis as future work.

3.1 Unambiguous State Discrimination Attack

One particularly devastating attack against standard B92 is the Unambiguous State Discrim-
ination (USD) [20, 21] attack. Since our system is, essentially, the semi-quantum version of
B92, it is no surprise that our protocol also suffers against it; in fact, things may be worse
since the “source” from B is affected by E’s first attack in the forward channel. Here we
will compare the effectiveness of our protocol with that of B92 for this attack.

The USD attack may be modeled as a unitary operator U (applied in the reverse channel
- see Equation 5):

U |EN〉 =
√
T |+, 0〉+

√
1− T |v, fv〉

U |1N〉 ⊗ |σEN〉 =
√
T |1, 1〉+

√
1− T |v, ev〉
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(the action of U on |1n〉 ⊗ |σEn 〉 is arbitrary - in fact our entropy bound assumes E gains full
information on such states). Above, 1− T is the probability A observes a vacuum state.

Let α = 〈1N , σN |EN〉. Unitarity requires that:

α = (1− T ) 〈fv|eV 〉
which, due to the fact that | 〈fv|ev〉 | ≤ 1, implies that, for U to be unitary, it must hold that
T ≤ 1− |α|. Thus, to be secure, it must hold that:

T > 1− |α| (11)

For B92, where α is a function of an honest user’s source (e.g., |α| = | 〈+|1〉 | = 1√
2
), this leads

to the known bound that T must be greater than 29.3% [21]. In particular, if A observes
T less than this (i.e., if the probability of a photon loss is greater than 70.7%), users must
abort as, potentially, E is able to extract full information from the signal. For our protocol,
the story is not as clear, since |α| can be chosen by the adversary and cannot be directly
observed!

While |α| cannot be directly observed, it can be bounded as a function of the detector
efficiency. Indeed, let PNC be the probability that B’s box outputs a 0 on its classical wire
when it is given the command to Measure and Resend. Also define v to be the dark-count
probability of the detector and η > 0 its efficiency (here we are assuming the implementa-
tion shown in Figure 2 is used - other implementations of the “box” will require different
characterizations at this point). By definition of the action of B’s “box” it holds that:

qm = (1− v)
∑

i∈{0,1}N
w(i)=m

|αi|2(1− η)N−m,

and so:

PNC = (1− v)
N∑
m=0

(1− η)N−m
∑

i∈{0,1}N
w(i)=m

|αi|2,

where w(i) is the Hamming weight of the bit-string i (i.e., it is the number of 1’s in the
string i). From this, we see:

PNC
1− v

= |α|2 + (1− η)


N−1∑
m=0

(1− η)N−m−1
∑

i∈{0,1}N
w(i)=m
i 6=11···1

|αi|2


≤ |α|2 + (1− η)

( ∑
i 6=11···1

|αi|2
)
≤ |α|2 + (1− η)

(
1− |α|2

)

⇒ |α|2 ≥ PNC
η(1− v)

− 1− η
η

(12)

10



Figure 3: Possible values of |α|2 based on detector efficiency η.

Similarly, we may upper-bound the quantity:

PNC
(1− v)

= |α|2 + (1− η)


N−1∑
m=0

(1− η)N−m
∑

i∈{0,1}N
w(i)=m
i 6=11···1

|αi|2

 ≥ |α|2

⇒ |α|2 ≤ PNC
1− v

. (13)

Note that, when v = 0 and η = 1 (i.e., the detector is perfect), then |α|2 = PNC and is
directly observable. As η decreases, the possible range of values for this quantity increase as
shown in Figure 3. Naturally, we must assume the worst case and so our protocol is secure
against the USD attack, so long as the probability of a photon loss (1− T ) satisfies:

1− T <

√
PNC

η(1− v)
− 1− η

η
. (14)

If B’s devices are perfect (in that v = 0 and η = 1), and if PNC = 1/2 (which could even be
enforced), then the maximal loss tolerated is 70.7% as with B92. This maximal loss drops
as η increases. This is shown in Figure 4.

In particular, if T = 10−a·`/10, where ` is the distance of the quantum channel, then this
protocol is secure against the USD attack, as long as:

` < −10

a
log10

(
1−

√
PNC

η(1− v)
− 1− η

η

)

The maximal distance supported is shown in Figure 5 for various η assuming a = .25dB/km.
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Figure 4: Protocol is secure against the USD attack so long as 1 − T (i.e., the probability
of photon loss) is in the shaded region. Put differently, the protocol is definitely insecure
outside the shaded region.

Figure 5: Maximum distance (from B to A) over which the protocol is secure against the
USD attack. Shown are PNC = .75, .5, and .25

.
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Figure 6: Showing the key-rate of our protocol against the attack described in Equation 15
as a function of Distance (in km) for η = .65, .85, and 1. Here PNC = .5

Figure 7: Showing the key-rate of our protocol against the attack described in Equation 15
as a function of Distance (in km) for η = .65, .85, and 1. Here PNC = .4

Now, beyond the USD attack, we may more generally write this attack as follows:

U |En〉 = |+, f0〉+ |v, fv〉 (15)

U |1N〉 = |1, e1〉+ |v, ev〉

We assume a symmetry in that 〈f0|f0〉 = 〈e1|e1〉 = T . Unitarity requires that Re 〈f0|e1〉 =√
2(Re(α)−Re 〈fv|ev〉). Using our bound on |α|, along with the Cauchy-Schwarz inequality

to bound | 〈fv|ev〉 | ≤ (1 − T ) and Equation 8, allows us to compute the key-rate as a
function of distance assuming only photon loss in the channel (note 〈E|F 〉 = 1

2
〈e1|f0〉 in

this attack scenario). Also, we have P̃Key1,1 = 1
2
T and P̃Key1,0 = 0. Finally, assuming the

implementation shown in Figure 2, we have qN = (1− v)|α|2. This is shown in Figures 6, 7,
and 8. Note that, as PNC decreases, the maximal distance also decreases. Keep in mind that
PNC is affected by N and E’s forward channel attack - ideally, PNC = .5, so lower values
constitute “noise.”

Note that, these attacks may be mitigated by extending our protocol in a manner similar
to that done for extended-B92 as discussed in [14] and this remains an interesting open
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Figure 8: Showing the key-rate of our protocol against the attack described in Equation 15
as a function of Distance (in km) for η = .85, and 1 (for η = .65 the key-rate dropped to
zero almost immediately). Here PNC = .25

problem (it also greatly complicates the information theoretic security analysis due to the
fact that, now, A will be preparing different states). Furthermore, bounding Re 〈f0|e1〉 when
channel noise is also present (we only considered channel loss here), is also an important
open question. Our equation for S(B|E), however, derived in the previous section can be
used towards this end.

3.2 Multi-Photon Attack

In this section, we consider how much information E can gain just by attacking the forward
channel. As before, let |e〉 = |EN〉 =

∑
x∈{0,1}N αx |x〉 |ex〉. Assume E captures the entire

state leaving B’s lab. In the event his key-bit is 0, this state is simply ρ0 = [EN]. If
his key-bit is 1 (and conditioning on the event he will later accept - i.e., c2 = 0), then
ρ2 = 1

PNC

∑
n qn[1n]. Assume the worst case in that she attempts to extract information

from the state at this point, instead of probing it further and forwarding a qubit to A.
Though A, of course, requires a qubit to complete the protocol iteration, if we compute
S(B|E) at this point, it can only be lower than in the “real” case.

It is not difficult to show by definition that S(B|E) = H(B)− I(B : E). Using a result
from [22], we have I(B : E) ≤ 1

2
||ρ0 − ρ1||. Thus:

S(B|E) ≥ H(B)− 1

2
||ρ0 − ρ1|| ≥ H(B)− 1

2

∣∣∣∣∣∣∣∣[EN]− qN
PNC

[1N]

∣∣∣∣∣∣∣∣− PNC − qN
2PNC

,

where the last inequality follows from the triangle inequality and the fact that, for positive
A, ||A|| = tr(A). Also, we used the fact that PNC =

∑
n qn.

Since [EN]− qN
PNC

[1N] is Hermitian and dimension no greater than two, the trace-norm is
simply the sum of the absolute value of the (two) eigenvalues. These eigenvalues are easily

14



Figure 9: A lower-bound on S(B|E) if E attacks the forward channel and tries to extract
information from the returning state (before passing it to A) as a function of B’s efficiency
η (“Eff.”). Shown are various levels of observed PNC = .5, .4, and .1. Note that the larger
N , the more likely PNC will be low.

computed as:

λ± =
1

2

1− qN
PNC

±

√(
1 +

qN
PNC

)2

− 4qN |α|2
PNC

 ,

where, as in the previous section, we define α to be 〈1N |EN〉 = α11···1. In conclusion,
therefore, if E only attacks the forward channel (i.e., launches a multi-photon attack against
B’s box), we have:

S(B|E) ≥ H(B)− 1

2
(|λ+|+ |λ−|)−

PNC − qN
2PNC

.

H(B) can be directly computed by B (in fact this may even be made to be 1 with some
standard post-processing techniques). Also, PNC is an observable statistic. The value of |α|2
may be bounded as described in the previous section. Finally, assuming the implementation
shown in Figure 2, it holds that qN = (1 − v)|α|2. To compute S(B|E), therefore, one
simply must numerically minimize the above expression over all valid |α|2. The result of this
minimization for various η and v is shown in Figure 9.

4 CLOSING REMARKS

In this paper we introduced a new SQKD protocol and analyzed its security against cer-
tain practical attacks. Many interesting questions remain open including a full analysis
against all attacks (though, in this paper, we have reduced the problem to only estimating

〈E|F 〉, 〈e0|f1〉, and P̃Keyi,j thus aiding future researchers). Our security analysis assumed
the existence of a “black box” and our evaluations involved one particular example of an
implementation of this box. Can a better implementation be constructed improving the
tolerance to low efficiency detectors?
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