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Quantum Key Distribution (QKD)
● Allows two users – Alice (A) and Bob (B) – to

establish a shared secret key

● Secure against an all powerful adversary

● Does not require any computational
assumptions

● Attacker bounded only by the laws of
physics

● Something that is not possible using
classical means only

● Accomplished using a quantum communication
channel
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QKD in Practice

● Quantum Key Distribution is here already

● Several companies produce commercial QKD equipment

● MagiQ Technologies
● id Quantique
● SeQureNet
● Quintessence Labs

● Have also been used in various applications:

● QKD was used to transmit ballot results for
national elections in Switzerland

● Has also been used to carry out bank transactions
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QKD in Practice

● Quantum Networks being developed or in use
now

● Boston area (DARPA)
● Tokyo
● Vienna
● Wuhu, China
● Geneva

● Freespace QKD being developed...
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QKD in Practice: Freespace

http://spie.org/newsroom/5189-free-space-laser-
system-for-secure-air-to-ground-quantum-
communications
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QKD Protocols
● QKD Protocols are designed and analyzed in a

standard adversarial model (SAM)
● Alice and Bob run the protocol with the

goal of establishing a shared secret key
● An all-powerful adversary (Eve) sits in the

middle of the channel intercepting each
qubit sent

● This adversary is malicious and has no
motivation to attack nor does she care
about the cost of attacking
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Game Theoretic Model
● In this work, we investigate the use of game theory to

study the security of QKD protocols

● Motivational idea is that, while QKD technology is
available now, it is very expensive to purchase and
operate.

● e.g., good measurement devices must be
super-cooled

● Thus, participants, including attackers, may take  this
expense into account 

● If attacking a quantum channel requires a great expense
and, at the end of it, all you can hope to do is slow the
communication rate, perhaps it is not worth the cost



8

Game Theoretic Model - Related

● Game Theory has been used to analyze some classical 
cryptographic primitives (e.g., rational secret sharing)

● Some recent preliminary work has been done by other
authors in attempting to combine game theory with QKD,
however past approaches have been restrictive
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Our Contributions
● We propose a new, general, game-theoretic framework for

QKD protocols

● Our approach allows for important security computations vital
to understanding the security of QKD protocols

● We apply our approach to two different QKD protocols and in
two different adversarial models

● We show that, in the game theoretic model, noise tolerance
upper-bounds in the SAM are comparable, however greater
communication efficiency may be attained
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General QKD Operation
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QKD Operation

● QKD Protocols utilize:

● Quantum Communication Channel
● Authenticated Classical Channel



12

QKD Operation

A BEve
qubits

q ubitsA + B communicate using qubits
and the auth. channel through
numerous iterations; Eve's attack
disturbs the qubits; result is a raw-
key

Quantum Communication Stage: Numerous Iterations

RK
A

RK
B

auth. cl auth. cl

Error Correction

RK
A

RK
B

Privacy Amplification

SK SK

Information Reconciliation (Classical Post Processing)

A E BA + B use the auth. channel to run
“error correction” (leaking extra
information to Eve) and “privacy
amplification” to produce the actual
secret key.

             Note: |SK| <= |RK|
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QKD – General Operation
● Eve cannot copy qubits – has to attack actively

● Direct correlation between noise and adversary's potential
information

● The more information E has, the more PA must “shrink”
the key by – thus as the noise increases, the efficiency
drops:

E
ff

ic
ie

n
cy
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Our Model
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Game Theoretic Model
● We model QKD as a two-party game:

● Player 1: “AB”

● Technically two separate entities, however we
model them as one player

● Their goal is to establish a long shared secret key
between one another

● Player 2: “E”

● The adversary whose goal is to limit the length of
the final secret key
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Game Theoretic Model

● Using the quantum channel, however, is costly

● Thus, AB may wish to simply “abort” and do nothing
depending on the noise in the channel

● Furthermore, if attacking the channel is too expensive
for too little reward (simply decreasing users'
efficiency), E may wish not to attack
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Eve's Strategy
● Denial-of-Service attacks are outside of our model

● Thus all attacks must induce noise less
than some value “Q”

● This noise level can represent natural noise in a
quantum channel plus some “leeway” for example.

● We are interested in finding the maximal allowed Q 
for which a key may be established in our rational
model

● This is also an important question in the
SAM allowing us to compare!
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Model
● Let S

AB
 be the set of strategies (i.e., protocols) which AB

may choose to run and let S
E
 be the set of strategies (i.e.,

attacks) which party E may choose to use.

● We always assume the “do nothing” strategy  is available
to both players (denoted I

AB
 and I

E
)

● Let Q be the maximal noise in the channel (which we wish
to upper-bound).
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Utility
● AB: the outcome is a function of the resulting secret

key length, denoted “M” (after error correction and
privacy amplification) along with the cost of running
the chosen protocol:

● E: the utility is a function of information gained on the
error-corrected raw key, denoted “K” (before privacy
amplification) and cost:

uAB(M , C AB(Π))=wg
AB M −wc

AB C AB(Π)

uE(K ,C E( A))=wg
E K−wc

EC E (A )
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Goal of the Model

● The goal of the model is to construct a protocol “P” for AB
such that (P, I

E
) is a strict Nash Equilibrium (NE).

● That is, assuming rational entities, AB are motivated to run the
protocol while E is motivated to not perform any attack on the
quantum communication

● Model guarantees that the resulting key is information theoretic
secure.

● While this is the same guarantee as in SAM, we will show
greater efficiency is possible for certain noise scenarios!
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Protocol Construction
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Protocols as Strategies

● To create protocols so that (P, I
E
) is a strict NE,

in this work we take standard QKD protocols
(such as BB84) and introduce “decoy
iterations”

● Decoy iterations are indistinguishable (to
an adversary) from standard iterations

● They are introduced randomly each
iteration with probability “1-a”
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Protocols as Strategies

● Decoy iterations cost AB resources and do not
contribute to the raw key

● However, Eve is also forced to attack these
iterations (as she does not know which are real
or decoy iterations)

● We find scenarios when an optimal “a” exists
depending on the noise level Q.
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Application 1 – BB84 + All Powerful
Attacks
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All-powerful Attacks Against BB84

● We first consider the BB84 protocol, appended
with decoy iterations

● Eve is allowed to perform an optimal all-
powerful attack

● This include a perfect quantum memory
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All-powerful Attacks Against BB84

● The expected utility for AB if Eve uses I
E
 is:

● Thus for a strict NE to exist, we require:

U AB(BB84 [a ] , I E)=a
N
2

(1−h(Q))−C AB

U AB( I AB , I E)=0

a>
2CAB

N (1−h(Q))
Note: This already places a limit on
how high “Q” can be before AB are
unmotivated!
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● For Eve, if she does not attack but only listens
passively to the error-correction information:

● If she does attack, using an optimal quantum
attack “V” (assuming such an attack is in S

E
), it

can be shown that:

Eve's Utility

U E (BB84 [a] , I E)=a
N
2

h(Q)

U E (BB84 [a] ,V )=a( N
2

h(Q)+N
2

h(Q))−CE=aNh(Q)−C E
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Improvement in Efficiency

● If C
AB

 = C
E
, then “a” exists only if

● But, greater efficiency is possible:

Different relative costs:

2CAB

N (1−h(Q))

Noise

E
ffi

ci
en

cy

1−2h (Q)>0 Q< 11%
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Improvement in Efficiency
● Note that, as the cost goes down (for both parties equally), the

protocol becomes less efficient.

● This is because Eve is more motivated to attack and so more decoy
iterations must be used

● Decoy iterations decrease efficiency

Different relative costs:

2CAB

N (1−h(Q))

Noise

E
ffi

ci
en

cy
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Application 2: Practical
Intercept/Resend Attacks
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Intercept/Resend Attack

● We also consider more “practical”
Intercept/Resend (I/R) attacks

● These use the same technology as AB (i.e., they
do not require a perfect quantum memory)

● This allows us to more precisely compute C
E
 

based on C
AB



32

Intercept/Resend Attack

● Eve attacks by measuring every qubit (something Bob
must do) and sending a new one (something Alice
must do)

● How she measures and sends is dependent on the attack

● We consider three different strategies
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Strategies
● AB (3 strategies):

● BB84[a]: Run the BB84 protocol using decoy
iteration parameter “a”

● B92[a]: Run the B92 protocol using decoy
iteration parameter “a”

● I
AB

: Do nothing

● E (4 strategies):

● Three different “bases” for Intercept/Resend
Attacks

– Note, in the paper, we work out the algebra to
allow future work analyzing arbitrary I/R
attacks

● I
E
: Do nothing
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Strategies

● BB84 and B92 are two commonly used
protocols in practice.

● B92 is “cheaper” to implement but BB84 is
more “robust” to noise in SAM

● We will show BB84 is the preferred choice in
our game-theoretic model (despite its higher
cost) for realistic noise levels
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Cost Function

C
S
: Initial cost for E to setup attack equipment

    C
M

: Cost to perform a measurement with “x” possible
          outcomes

    C
P
: Cost to prepare (i.e., “send”) a qubit from “x”

           possible states

C
R
(d): Cost to produce a d-biased bit

● We assume C
R
(d) = h(d)C

R
, for some C

R

C
auth

: Cost for AB to use the authenticated channel

This allows us more control in computing cost of protocols and attacks:

γx

γx
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Main Result: If classical resources are free for both parties (C
R
 = C

auth
 = C

S
 = 0)

and if C
P
 <= C

M
, then there exists an 0 < a < 1 such that:

(BB84[a], I
E
)

is a strict NE if the noise in the channel Q satisfies:

10.025( 1
4
+1

4
h( 2Q

1−2Q
)−1

2
h(Q))−(

γ4
γ2

−1)>0

2.506(1−h(Q))−
γ4
γ2

>0

If A
1
 > A

2

Otherwise

A1=
(γ4−γ2)C P

1
4
+1

4
h( 2Q

1−2Q
)−1

2
h(Q)

A2=
2 γ4 (C M+CP)

1−h(Q)

Where:
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Theorem 1 – Noise Tolerance

γ4=γ2

γ4=2 γ2

Q≤.146

Q≤.031

n /a

Q≤.207

A2≥A1 A1>A2
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Theorem 1 – Noise Tolerance

γ4=γ2

γ4=2 γ2

Q≤.146

Q≤.031

n /a

Q≤.207

A2≥A1 A1>A2

This is the same noise tolerance against
optimal individual attacks in SAM.

Individual attacks are stronger than I/R
attacks.

Thus, our noise tolerance is lower than SAM;
but, as before, efficiency may improve.
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Theorem 1 – Noise Tolerance

This is the same noise tolerance against
optimal individual attacks in SAM.

Individual attacks are stronger than I/R
attacks.

Thus, our noise tolerance is lower than SAM;
but, as before, efficiency may improve.
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Theorem 1 – Noise Tolerance

γ4=γ2

γ4=2 γ2

Q≤.146

Q≤.031

n /a

Q≤.207

A2≥A1 A1>A2

If it is more costly to prepare 4
states vs. 2, then Eve has a
greater incentive and so there
are more strict requirements
on the channel noise.
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Closing Remarks
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Closing Remarks

● We proposed a general game-theoretic model of
security for QKD

● Unlike prior work, our method can be applied
to arbitrary QKD protocols + attacks;
furthermore, it allows for important noise
tolerance and key-rate computations

● The noise tolerance of QKD protocols in the
GT model is similar or lower than the SAM

● However, greater efficiency is possible!



43

Future Work

● Additional strategies for AB and E
● We only looked at two protocols but our methods work

for others

● Also, while we worked out the equations for arbitrary
I/R attacks, we only considered three in our
theorems

● Different, non-linear, utility functions

● Multi-user protocols

● Different game models
● Including games where players are allowed to change

their strategy after N iterations

Many interesting problems remain!
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Thank you! Questions?
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Model
● Note that, even if Eve choose I

E
, she still learns information on the

raw key without incurring any cost

● However, if she wants to learn more, (causing AB's efficiency to drop
further), she must choose to commit resources to attack the channel

A B
Quantum Channel with Natural Noise “Q”

E

Error Correction Information

A B
Eve replaces with perfect QC and “hides” in the noise

E
Error Correction Information

I
E

Attack:
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E's Motivation

● Eve wants to maximize information on the “raw key” before
privacy amplification (PA) even though this is not the “secret
key” used for further cryptography.

● Would it make more sense to define utility in terms of learning
the secret key?

● PA, however, guarantees that Eve's knowledge on the secret
key will be negligible!  Thus, this can never motivate a rational
entity

● Instead, we chose motivation based on raw key as this will have
the effect of decreasing A and B's communication efficiency

● Thus, decreasing the key-rate of A and B is Eve's main goal

uE(K ,C E( A))=wg
E K−wc

E C E(A)
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All-powerful Attacks Against BB84

● We first consider BB84 augmented with decoy
iterations, denoted “BB84[a]”

● After “N” iterations, assuming only “natural
noise” AB are left with a secret-key of expected
size:

a
N
2

(1−h(Q))
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All-powerful Attacks Against BB84

● We first consider BB84 augmented with decoy
iterations, denoted “BB84[a]”

● After “N” iterations, assuming only “natural
noise” AB are left with a secret-key of expected
size:

a
N
2

(1−h(Q))

Non-decoy
iteration



51

All-powerful Attacks Against BB84

● We first consider BB84 augmented with decoy
iterations, denoted “BB84[a]”

● After “N” iterations, assuming only “natural
noise” AB are left with a secret-key of expected
size:

a
N
2

(1−h(Q))

Non-decoy
iteration

Efficiency
of BB84
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All-powerful Attacks Against BB84

● We first consider BB84 augmented with decoy
iterations, denoted “BB84[a]”

● After “N” iterations, assuming only “natural
noise” AB are left with a secret-key of expected
size:

a
N
2

(1−h(Q))

Non-decoy
iteration

Efficiency
of BB84

Loss due
to error

correction
leakage
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Cost for BB84

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth
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Cost for BB84

Decoy Parameter

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth
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Cost for BB84

Decoy Parameter

Number of
Iterations

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth
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Cost for BB84

Decoy Parameter

Number of
Iterations

AB must produce 3
uniform bits each iteration

and one a-biased bit
(for decoy choice)

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth
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Cost for BB84

Decoy Parameter

Number of
Iterations

AB must produce 3
uniform bits each iteration

and one a-biased bit
(for decoy choice)

AB Must
prepare and

measure
qubits (four
states each)

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth
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Cost for BB84

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth

Decoy Parameter

Number of
Iterations

AB must produce 3
uniform bits each iteration

and one a-biased bit
(for decoy choice)

AB Must
prepare and

measure
qubits (four
states each)

Authentication
Channel used
once at end

typically
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Cost for B92
C AB(B92 [a ])=N [(2+h(a))CR+γ4 C M +γ2 CP ]+Cauth

C AB(BB84 [a])=N [(3+h(a))CR+γ4 C M+γ4 C P]+Cauth

Fewer
Random
Choices
Needed

Only
need to
prepare

two
states

B92 is less tolerant to noise in the SAM

Also, Eve can gain more information
through the I/R attacks we consider than
with BB84
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Cost for Eve

CE (V )=N [h( p)CR+p γ2(C M+CP)]+C S

Number of
Iterations

Eve decides to attack each
iteration with probability “p”; thus
she must produce a p-biased bit

If she attacks, she
must measure and

send a qubit

One-time cost to
setup attack
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